

Project:	Contract:
Angle Design	1472-2
Subject: DESIGN C – 1500x1000mm	Sheet No.
Date: 19/10/2021	By:

Concorde Glass Ltd.,
Linx House,
104 Waterloo Rd,
Mablethorpe,
LN12 1LE,
UK.

Angle Design 1472-2 DESIGN C – 1500x1000mm 6mm Angle

Analysis By	Checked By
A.N	T.S.

1	08/12/2021 06/12/2021	T.S T.S	Amended Amended
0	19/10/2021	T.S.	Issued
Revision	Date	Issued By	Comment

Project:	Contract:
Angle Design	1472-2
Subject: DESIGN C – 1500x1000mm	Sheet No.
Date: 19/10/2021	By:

Contents

Actions/Result Summary:	2
Introduction:	2
Actions:	2
Assumption:	2
Result Summary:	2
Sketch of System:	3
Loading:	4
Capacity of 75x50x6mm Angle:	4
Capacity of angle Based on 1500mm×1000mm Glass floor:	4
Check 1 – 1500mm Long leg:	4
Check 2 – 1000mm Long leg:	5

Project:	Contract:
Angle Design	1472-2
Subject: DESIGN C – 1500x1000mm	Sheet No.
Date: 19/10/2021	By:

Actions/Result Summary:

Introduction:

T. Singleton & Associates Consulting Engineers (TSA) have been commissioned by Concorde Glass Ltd to carry out an Angle Design to support 1500×1000 Glass Floor.

Actions:

Load = $4kN/m^2$

(As per client instruction)

Assumption:

Steel Grade S355

Result Summary:

Angle: 75x50x6mm Grade S355 Mild Steel Angle. Weld: Full penetration Butt weld at four corners.

Note: To be fabricated in accordance with BS EN 1090 Execution Class 2

Project:	Contract:
Angle Design	1472-2
Subject: DESIGN C – 1500x1000mm	Sheet No.
Date: 19/10/2021	By:

Sketch of System:

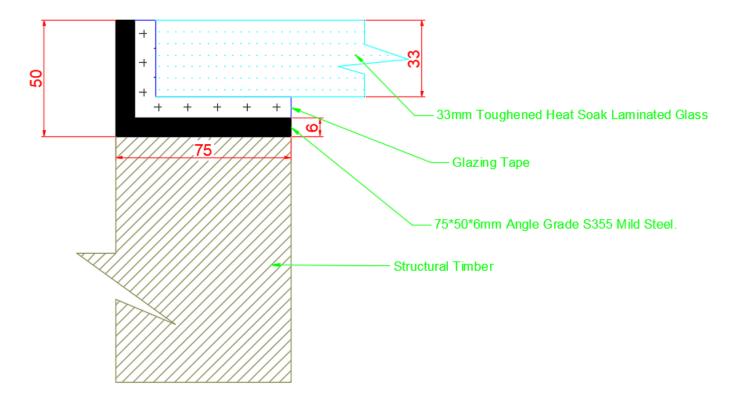


FIGURE 1 - SHOWS AN ELEVATION SKETCH

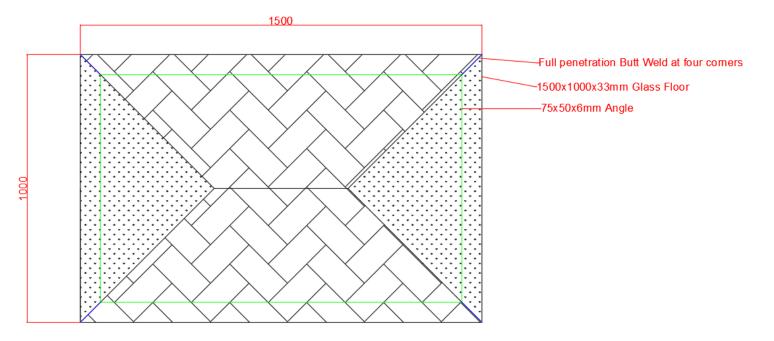


FIGURE 2 - SHOWS THE PATTERN OF THE LOAD DISTRIBUTED ON THE GLASS FLOOR PANEL

Project:	Contract:
Angle Design	1472-2
Subject: DESIGN C – 1500x1000mm	Sheet No.
Date: 19/10/2021	By:

Loading:

Live load = $4kN/m^2$ (SLS)

Dead load (Self weight of glass) = $0.033 \text{m} \times 25 \text{kN/m}^3 = 0.825 \text{kN/m}^2$ (SLS)

Total load = $(4kN/m^2 \times 1.5) + (0.825kN/m^2 \times 1.35) = 7.11kN/m^2$ (ULS)

Capacity of 75x50x6mm Angle:

Capacity of angle Based on 1500mm×1000mm Glass floor:

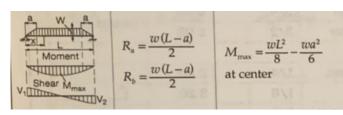
Check 1 - 1500mm Long leg:

 $f_y = 355 MPa$ (Grade S355 Mild Steel, Table 3.1 EN 1993-1-1:2005)

E = 210,000 MPa (Grade S355 Mild Steel, Table 3.1 EN 1993-1-1:2005)

 $I = 405000mm^4$ (75×50×6mm Angle)

 $Z = 8010mm^3 \qquad (75 \times 50 \times 6 \text{mm Angle})$


 $\gamma_Q = 1.5$ (Table 6.10 EN 1991-1-1:2002)

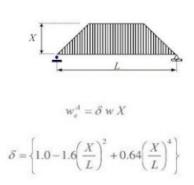
Maximum Moment = $(\frac{\frac{7.11kN}{m^2} \times 0.5m \times 1.5^2m}{8}) - (\frac{\frac{7.11kN}{m^2} \times 0.5m \times 0.5^2m}{6}) = 0.85kNm$

Maximum Stress:

$$\sigma_{\text{max}} = \frac{M}{Z}$$

$$\sigma_{max} = \frac{0.85 \times 10^6}{8010} = 107 \frac{N}{mm^2} < 355 \frac{N}{mm^2}$$
 Okay

Maximum Deflection:


$$\alpha_{\text{max}} = \frac{5w_e^{\Delta}l^4}{384EI}$$

$$\sigma = \left(1 - 1.6 \left(\frac{x}{I}\right)^2 + 0.64 \left(\frac{x}{I}\right)^4\right)$$

$$\sigma = \left(1 - 1.6\left(\frac{0.5}{1.5}\right)^2 + 0.64\left(\frac{0.5}{1.5}\right)^4\right) = 0.83$$

$$w_e^\Delta=0.83\times4.825 kN/m^2\times0.5 m=2kN/m$$

$$\alpha_{max} = \frac{5 \times 2N/mm \times 1500^4 \mathit{mm}}{384 \times 210000N/mm^2 \times 405000mm^4} = 1.55mm < 7.5mm \; \left(\frac{1500}{200}\right) \; \; \text{Okay}$$

Therefore, use 75x50x6mm Grade S355 Mild Steel Angle.

Project:	Contract:
Angle Design	1472-2
Subject: DESIGN C – 1500x1000mm	Sheet No.
Date: 19/10/2021	By:

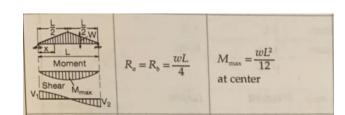
Check 2 – 1000mm Long leg:

 $f_y = 355 MPa$ (Grade S355 Mild Steel, Table 3.1 EN 1993-1-1:2005)

E = 210,000 MPa (Grade S355 Mild Steel, Table 3.1 EN 1993-1-1:2005)

 $I = 405000mm^4$ (75×50×6mm Angle)

 $Z = 8010mm^3 \qquad (75 \times 50 \times 6mm \text{ Angle})$


 $\gamma_{O} = 1.5$ (Table 6.10 EN 1991-1-1:2002)

$$\text{Maximum Moment} = \frac{\frac{7.11 \text{kN}}{\text{m}^2} \times 0.5 \text{m} \times 1^2 \text{m}}{12} = 0.3 \text{kNm}$$

Maximum Stress:

$$\sigma_{max} = \frac{\scriptscriptstyle M}{\scriptscriptstyle Z}$$

$$\sigma_{max} = \frac{_{0.3\times10^6}}{_{8010}} = 38\frac{_N}{_{mm^2}} < 355\frac{_N}{_{mm^2}} \quad \text{Okay}$$

Maximum Deflection:

$$\alpha_{\max} = \frac{wl^4}{120EI}$$

$$w = 4.825kN/m^2 \times 0.5m = 2.412kN/m$$

$$\alpha_{max} = \frac{2.412 N/mm \ \times 1000^4 mm}{120 \times 210000 N/mm^2 \times 405000 mm^4} = 0.24 mm < 5 mm \left(\frac{1000}{200}\right) \text{ Okay}$$

Therefore, use 75x50x6mm Grade S355 Mild Steel Angle.