

Project:	Contract:
Concorde Glass Ltd	1983-1
Subject:	Sheet No.
Glassloc Juliette Balcony Side Fix	1
Date:	By:
15/04/2024	A.N & R.F. & CC

Concorde Glass Ltd., Linx House, 104 Waterloo Rd, Mablethorpe, LN12 1LE, UK.

Glassloc Juliette Balcony Fixing Data Side Fix

Analysis By	Checked By
A.N & R.F. & CC	C.K

0	15/04/2024	T.S.	Issued
Revision	Date	Issued By	Comment

Project:	Contract:
Concorde Glass Ltd	1983-1
Subject:	Sheet No.
Glassloc Juliette Balcony Side Fix	2
Date:	By:
15/04/2024	A.N & R.F. & CC

Contents

Introduction/Actions/Assumptions/Result Summary:	3
Introduction:	3
Actions:	3
Assumption:	3
Result Summary:	3
Glass Strength	4
Balustrade Loading:	4
Wind Loading:	4
Glassloc Juliette – Side Fix Connections:	5
Sketch of System:	5
Connection to Concrete Design - Side Fixed – Span of 2000mm:	7
Connection To Mild Steel Baseplate - Side Fixed – Span of 2000mm:	8
Connection To Timber - Side Fixed – Span of 2000mm:	9
Connection To Aluminium window frame - Side Fixed – Span of 2000mm:	10
Glass Analysis for Span of 2000mm – Glassloc Juliette:	11
Appendix A – Timco Timber Screws Specfication Sheet	18
Appendix B – Index Screws Specfication Sheet	21
Appendix C - Fischer Reports	24

Introduction/Actions/Assumptions/Result Summary:

Introduction:

TSA was instructed by Concorde Glass Ltd to provide the below Calculations:

- 1- Provide fixing details for side-fix connections from GLASSLOC JULIETTE to concrete, steel, aluminium, and timber for a span of 2000mm.
- 2- Provide a glass analysis for the GLASSLOC JULIETTE for a span of 2000mm.

Actions:

Balustrade load = 0.74kN Point load = 0.5kN Typical High Wind load = 2.5kN/m² (Table NA.6 IS1991-1-1:2002) (Table NA.5 IS1991-1-1:2002)

Assumption:

Concrete Grade = C30/37

Bolts are grade 8.8 Mild Steel.

Timber Grade = C16 (minimum)

Result Summary:

A. Side Fix Glassloc Juliette:

C1. For Span of 2000mm:

- Connection to Concrete: Use 1No. Ultracut FBS II 8×70 20/5 Zinc Plated Steel Fischer Concrete screws@200mm C/C with Minimum Embedment depth is 40mm and Minimum edge distance is 50mm.
- 2- Connection to Steel: Use M8 Grade 8.8 bolts @200mm C/C.
- 3- Connection to Timber: Use M8×40mm Timco Coach Wood Screws @200mm C/C.
- 4- Connection to Aluminium: Use M5.5 ABR Index Screws or similar @200mm C/C.
- Glassloc Juliette Glass Panel 3: 1100mm (H) × 2000mm (W) × 21.52mm Toughened
 Laminated Glass Panels with EVA Interlayers.

Project:	Contract:
Concorde Glass Ltd	1983-1
Subject:	Sheet No.
Glassloc Juliette Balcony Side Fix	4
Date:	By:
15/04/2024	A.N & R.F. & CC

Glass Strength

Balustrade Loading:

< 5mins duration => k_{mod} = 0.77

 $f_{gd} = (k_{mod})(k_{sp})(f_{gk})/\gamma_{ma} + k_v(f_{bk}-f_{gk})/\gamma_{mv}$

 $f_{gd} = (0.77)(1.0)(45)/1.6 + 1.0(120-45)/1.2$

 $f_{gd} = 84.2 \text{N/mm}^2$

Wind Loading:

10min duration, Multiple Gust Storm => k_{mod} = 0.74

 $f_{gd} = (k_{mod})(k_{sp})(f_{gk})/\gamma_{ma} + k_v(f_{bk}-f_{gk})/\gamma_{mv}$

 $f_{gd} = (0.74)(1.0)(45)/1.6 + 1.0(120-45)/1.2$

 $f_{gd} = 83.3 \text{N/mm}^2$

Project:	Contract:
Concorde Glass Ltd	1983-1
Subject:	Sheet No.
Glassloc Juliette Balcony Side Fix	5
Date:	By:
15/04/2024	A.N & R.F. & CC

Glassloc Juliette – Side Fix Connections:

Project:	Contract:
Concorde Glass Ltd	1983-1
Subject:	Sheet No.
Glassloc Juliette Balcony Side Fix	6
Date:	By:
15/04/2024	A.N & R.F. & CC

Note: The above sketches are for Illustration purposes only.

\leq	AZTI
51	

Project:	Contract:
Concorde Glass Ltd	1983-1
Subject:	Sheet No.
Glassloc Juliette Balcony Side Fix	7
Date:	By:
15/04/2024	A.N & R.F. & CC

Connection to Concrete Design - Side Fixed – Span of 2000mm:

Shear Load due to Balustrade load = 0.74kN/m $\times 1.5 \times 1$ m = 1.11kN (ULS)

Shear Load due to Wind load = 2.5kN/m² × 1.5 × 1m × 0.6m = 2.25kN (ULS) – Worst Case.

Therefore, use 1No. Ultracut FBS II 8×70 20/5 Zinc Plated Steel Fischer Concrete screws@200mm C/C with Minimum Embedment depth is 40mm and Minimum edge distance is 50mm as per the screenshot below.

Project:	Contract:
Concorde Glass Ltd	1983-1
Subject:	Sheet No.
Glassloc Juliette Balcony Side Fix	8
Date:	By:
15/04/2024	A.N & R.F. & CC

Connection To Mild Steel Baseplate - Side Fixed – Span of 2000mm: **M8 Grade 8.8 Bolt:**

$f_y = 640 MPa$	(Grade 8.8 Mild Steel, Table 3.1 EN 1993-1-8:2005)
$f_{ub} = 800 MPa$	(Grade 8.8 Mild Steel, Table 3.1 EN 1993-1-8:2005,
$\alpha = 0.6$	(Table 3.4 EN 1993-1-8:2005)
$A = 36.6mm^2$	(For M8 Bolts)
$\lambda_{m2} = 1.25$	(Table 5.1 EN 1993-1-4:2006)

Shear Resistance Check: (Table 3.4 EN 1993-1-8:2005)

 $F_{v,Ed}$: is the design shear force per bolt for the ultimate limit state.

 $F_{v,Rd}$: is the design shear resistance per bolt.

 $F_{V.Ed} = 0.75 \text{kN}$

 $F_{V,Rd} = \frac{\alpha F_{ub}A}{\lambda m^2} = \frac{0.6 \ x \ 800 \ x \ 36.6}{1.25} \ x \ 10^{-3} = 14.05 \text{kN} \rightarrow F_{V,Rd} = 14.05 \text{kN} > 0.75 \text{kN}$ Okay

Therefore, Use M8 Grade 8.8 Bolts @200mm C/C.

Project:	Contract:
Concorde Glass Ltd	1983-1
Subject:	Sheet No.
Glassloc Juliette Balcony Side Fix	9
Date:	By:
15/04/2024	A.N & R.F. & CC

Connection To Timber - Side Fixed – Span of 2000mm: Shear Resistance Check:

Shear Force per screw $= \frac{0.75 \text{kN}}{1.5} = 0.5 \text{kN}$

Shear Capacity of M8 Coach Screws = 1.17kN as per BS 5268-2:2002

Therefore, 1.17kN > 0.5kN Okay

Minimum edge distance required is 5d = 5 x 8 = 40mm.

Therefore, use M8 Coach Screws or similar @200mm C/C.

Project:	Contract:
Concorde Glass Ltd	1983-1
Subject:	Sheet No.
Glassloc Juliette Balcony Side Fix	10
Date:	By:
15/04/2024	A.N & R.F. & CC

Connection To Aluminium window frame - Side Fixed – Span of 2000mm:

Shear Resistance Check:

Shear Force per screw = 0.75kN

Shear Capacity of M5.5 Index Screws = $\frac{4.82 \text{kN}}{2}$ = 2.41kN as per Datasheet in Appendix B.

Therefore, 2.41kN > 0.75kN Okay

Therefore, use M5.5 ABR Index Screws or similar @200mm C/C.

Project:	Contract:
Concorde Glass Ltd	1983-1
Subject:	Sheet No.
Glassloc Juliette Balcony Side Fix	11
Date:	By:
15/04/2024	A.N & R.F. & CC

Glass Analysis for Span of 2000mm – Glassloc Juliette: System Sketch:

21.52mm Thickness (10+1.52+10mm) EVA Interlayer

Project:	Contract:
Concorde Glass Ltd	1983-1
Subject: Glassloc Juliette Balcony Side Fix	Sheet No. 12
Date:	By:
15/04/2024	A.N & R.F. & CC

Glass Analysis - Bending Stress of Glass Panel due to 2.5kN/m2 Wind Loading:

- Analysis Software was used to determine maximum bending stress of the glass due to 2.5N/m2 Wind Loading.
- 10/10/1.52mm T/L/T Glass analysed, horizontally toughened Laminated.
- Interlayer Properties used for analysis, E= 18MPa, G = 6.82MPa EVA
- Bending Stress analysed based on glass panel of 2000 (I) x 1100 (h) mm.

Result:

Max. Bending Stress = 13.29N/mm² X 1.5 = 19.94N/mm² < 83.3N/mm²

OK in Bending

	ISA
A	TED SINGLETON & ASSOCIATES
Z	TED SINGLETON & ASSOCIATES CONSULTING ENGINEERS

Project:	Contract:
Concorde Glass Ltd	1983-1
Subject:	Sheet No.
Glassloc Juliette Balcony Side Fix	13
Date:	By:
15/04/2024	A.N & R.F. & CC

Glass Analysis - Deflection of Glass Panel due to 2.5kN/m2 Wind Loading:

- Analysis Software was used to determine maximum deflection of the glass due to 2.5N/m2 Wind Loading
- 10/10/1.52mm T/L/T Glass analysed, horizontally toughened Laminated
- Interlayer Properties used for analysis, E= 18MPa, G = 6.82MPa EVA
- Deflection analysed based on glass panel of 2000 (I) x 1100 (h) mm

Result:

Max. Deflection = 3.326mm < 25mm {BS6180:2011 cl. 6.4.1}

OK in Deflection (Glass Only)

Project:	Contract:
Concorde Glass Ltd	1983-1
Subject: Glassloc Juliette Balcony Side Fix	Sheet No. 14
Date:	By:
15/04/2024	A.N & R.F. & CC

Glass Analysis - Bending Stress of Glass Panel due to 0.74kN/m Balustrade Loading:

- Analysis Software was used to determine maximum bending stress of the glass due to 0.74kN/m Balustrade Loading
- Actual Balustrade Load applied to the glass is 1.48kN (0.74kN/m x 2.0m)
- 10/10/1.52mm T/L/T Glass analysed, horizontally toughened Laminated
- Interlayer Properties used for analysis, E= 18MPa, G = 6.82MPa EVA
- Bending Stress analysed based on glass panel of 2000 (I) x 1100 (h) mm

Result:

Max. Bending Stress = 8.633N/mm² X 1.5 = 12.95N/mm² < 84.2N/mm²

OK in Bending

	Project:	Contract:
	Concorde Glass Ltd	1983-1
TSA TED SINGLETON & ASSOCIATES	Subject: Glassloc Juliette Balcony Side Fix	Sheet No. 15
	Date: 15/04/2024	By: A.N & R.F. & CC

Glass Analysis - Deflection of Glass Panel due to 0.74kN/m Balustrade Loading:

- Analysis Software was used to determine maximum deflection of the glass due to 0.74kN/m Balustrade Loading
- Actual Balustrade Load applied to the glass is 1.48kN (0.74kN/m x 2.0m)
- 10/10/1.52mm T/L/T Glass analysed, horizontally toughened Laminated
- Interlayer Properties used for analysis, E= 18MPa, G = 6.82MPa EVA
- Deflection analysed based on glass panel of 2000 (I) x 1100 (h) mm

Result:

Max. Deflection = 2.298mm < 25mm {BS6180:2011 cl. 6.4.1}

OK in Deflection (Glass Only)

TCA
IJA
ED SINGLETON & ASSOCIATES
CONSULTING ENGINEERS

Project:	Contract:
Concorde Glass Ltd	1983-1
Subject:	Sheet No.
Glassloc Juliette Balcony Side Fix	16
Date:	By:
15/04/2024	A.N & R.F. & CC

Glass Analysis - Bending Stress of Glass Panel due to 0.5kN Point Load:

- Analysis Software was used to determine maximum bending stress of the glass due to 0.5kN Point Load
- 10/10/1.52mm T/L/T Glass analysed, horizontally toughened Laminated
- Interlayer Properties used for analysis, E= 18MPa, G = 6.82MPa EVA
- Bending Stress analysed based on glass panel of 2000 (I) x 1100 (h) mm

Result:

Max. Bending Stress = 1.268N/mm² X 1.5 = 1.91N/mm² < 84.2N/mm²

OK in Bending

	ISA
A	TED SINGLETON & ASSOCIATES
~	

Project:	Contract:
Concorde Glass Ltd	1983-1
Subject:	Sheet No.
Glassloc Juliette Balcony Side Fix	17
Date:	By:
15/04/2024	A.N & R.F. & CC

Glass Analysis - Deflection of Glass Panel due to 0.5kN Point Load:

- Analysis Software was used to determine maximum deflection of the glass due to 0.5kN Point Load
- 10/10/1.52mm T/L/T Glass analysed, horizontally toughened Laminated
- Interlayer Properties used for analysis, E= 18MPa, G = 6.82MPa EVA
- Deflection analysed based on glass panel of 2000 (I) x 1100 (h) mm

Result:

Max. Deflection = 0.3174mm < 25mm {BS6180:2011 cl. 6.4.1}

OK in Deflection (Glass Only)

Project:	Contract:		
Concorde Glass Ltd	1983-1		
Subject:	Sheet No.		
Glassloc Juliette Balcony Side Fix	18		
Date: 15/04/2024	By: A.N & R.F. & CC		

Appendix A – Timco Timber Screws Specfication Sheet

TSA is Both the Designer and the Specifier of the Fixings.

Project:	Contract:			
Concorde Glass Ltd	1983-1			
Subject:	Sheet No.			
Glassloc Juliette Balcony Side Fix	19			
Date:	By:			
15/04/2024	A.N & R.F. & CC			

000000000000000000000000000000000000000	
DECLARATIO	N OF PERFORMANCE
	DOP7 v2
We here by declare th	e following designated products
TIMco Coa	ch Screws DIN571
Diameter 6.0mm,	8.0mm, 10.0mm, 12.0mm
Have been tested by the following ind	ependant testing organisation:
Notified Body 1015 Strolimontal Zhurabai Listau s	n Crack Bonublic
And that they have performed initial ty	ype testing under system 3, Annex V of the regulation
(EU) no. 305/2011 (Construction Produ European standard (hEN) BS EN 14592	icts Regulation), with the reference to the harmonised 2008+A1:2012 (Timber structures - Dowel type
fasteners - Requirements) for nails inte and produced the calculation/test repr	nded for the use in "load bearing timber structures" orts and certificates as listed below:
Certificate Number: E-30-20414-13, E	-30-20405-13, E-30-20406-13, E-30-20407-13.
Test Report Number: No. 30-9915/1 to	No. 30-9915/4.
Factory Process Control (FPC) has bee audited by TUV Rheinland UK in accord	en established by the factory and independently dance with ISO9001:2008
This declaration of conformity is valid a	until there is a significant change in the product and
declared characteristics. ie. raw materia	al or change in production process.
Signed by:	Name: Simon Midwood
V	

Project:	Contract:		
Concorde Glass Ltd	1983-1		
Subject:	Sheet No.		
Glassloc Juliette Balcony Side Fix	20		
Date:	By:		
15/04/2024	A.N & R.F. & CC		

						TIMc	o Coach S	Screw D	IN571 -	Zinc					
Size	Nominal diameter d (mm)	Inner thread diameter d1	Total Length L (mm)	Thread Length Ig (mm)	Head diameter dh (mm)	Test Report No. Certificate No.	Test Report No.	fest Report No. Certificate No.	Characteristic yield moment M _{y,k} (Nmm)		Characteristic withdrawal parameter f _{ax,k} (N/mm ²)		Characteristic head pull-through parameter fhead.k	Characteristic tensile capacity ftens,k (kN)	Characterist torsional ratio
								Thread Section	Smooth Section	Loading across the fibre	Loading along the fiber	(N/mm²)			
6 x 25 6 x 30 6 x 40 6 x 50 6 x 60 6 x 65	6.0	4.2	25 30 40 50 60 65	15 18 24 30 36 39	10.0	No. 30-9915/1	E-30-20414-13	11 166	18 366	16,64	10,45	24,27	9.9	1,87	
6 x 70			70	42											
6 x 80			80	43											
6 x 100			100	60											
8 x 30 8 x 40 8 x 50 8 x 60 8 x 65 8 x 70 8 x 75 8 x 80 8 x 90 8 x 100 8 x 150	8.0	5.6	30 40 50 60 65 70 75 80 90 100 150	18 24 30 36 39 42 45 48 54 60 90	13.0	No. 30-9915/2	E-30-20405-13	22 852	41 589	13,91	8,52	22,20	16,21	1,50	
10 x 40 10 x 50 10 x 60 10 x 70 10 x 75 10 x 80 10 x 100 10 x 120 10 x 130 10 x 150 10 x 200	10.0	7.0	40 50 60 70 75 80 100 120 130 150 200	24 30 36 42 45 48 60 72 78 90 120	17.0	No. 30-9915/3	E-30-20406-13	42 887	89 040	12,47	10,04	22,13	26,45	2,18	
12 x 50 12 x 75 12 x 80 12 x 100	12.0	9.0	50 75 80 100	30 45 48 60	19.0	No. 30-9915/4	E-30-20407-13	82 789	147 141	12,24	9,81	21,12	40,37	2,11	

Project:	Contract:		
Concorde Glass Ltd	1983-1		
Subject: Glassloc Juliette Balcony Side Fix	Sheet No. 21		
Date: 15/04/2024	By: A.N & R.F. & CC		

Appendix B – Index Screws Specfication Sheet

TSA is Both the Designer and the Specifier of the Fixings.

Project:	Contract:		
Concorde Glass Ltd	1983-1		
Subject:	Sheet No.		
Glassloc Juliette Balcony Side Fix	22		
Date:	By:		
15/04/2024	A.N & R.F. & CC		

- Zinc-plated (code ABR), white zinc-plated (code ABR_BLE) and black zinc-plated (code NBR) finishes.
- A2 stainless steel version (code ABRA2) for use exclusively with aluminium (does not produce corrosion by galvanic coupling). Do not use screw in stainless steel to drill steel, as point will burn out due to lack of hardness.

Project:	Contract:			
Concorde Glass Ltd	1983-1			
Subject:	Sheet No.			
Glassloc Juliette Balcony Side Fix	23			
Date:	By:			
15/04/2024	A.N & R.F. & CC			

TECHNICAL DATA SHEET

SELF-DRILLING SCREW FIXINGS

Denomination: SELF-DRILLING SCREW FIXINGS	Codes: ABE, ABEI, ARE, ABR, A	ABRBLE, NBR, ABRC, ABRCA2,	ABRA2, ABA, FS, ABP, NBP,
	ABPC, ABPCA2, TAEZ, TAEN, B	SCPZ, BZPZBL, BCPN, BCPB, BC	PA2, BIE, AUTO, BAUTO, RS.
Reference: FT BRO-en	Date: 30/05/19	Revision: 13	Page: 6 of 23

		1				1 A A A A A A A A A A A A A A A A A A A
	M		HICKNESS	TO BE FIXE	D	
Length	ST 3,5	ST 3,9	ST 4,2	ST 4,8	ST 5,5	ST 6,3
9,5	2,85					
11	4,2					
13	6,2	5,8	4,3	3,7		
16	9,2	8,8	7,3	5,5		
19	12,1	11,7	10,3	8,7	8,7	7
22	15,1	14,7	13,3	11,7	11,7	10
25	18,1	17,7	16,3	14,7	14,7	13
32	25,1	24,5	23	21,5	21,5	20
38		30,5	29	27,5	27,5	26
45			36	34,5	34,5	33
50			41	39,5	39,5	38
60				49,5	49,5	48
63				52,5	52,5	51
73				62,5	62,5	61
75				64,5	64,5	63
80				69,5		68
90				79,5		78
100				89,5		88
110						98
120						108
130						118
140						128

SCREW RESISTANCE CHARACTERISTICS*

SIZE	TENSION [kN]	SHEAR [kN]
ST 2.9	2.62	1.31
ST 3.5	3.81	1.91
ST 3.9	4.64	2.32
ST 4.2	5.26	2.63
ST 4.8	7.11	3.56
ST 5.5	9.63	4.82
ST 6.3	13.36	6.68

Project:	Contract:		
Concorde Glass Ltd	1983-1		
Subject:	Sheet No.		
Glassloc Juliette Balcony Side Fix	24		
Date: 15/04/2024	By: A N & R F & CC		
13/04/2024	All a ki i a ce		

Appendix C - Fischer Reports

TSA is Both the Designer and the Specifier of the Fixings.

C-FIX 1.122.0.0 Database version 2024.3.11.15.56 Date 03/04/2024

Client Concorde Glass Ltd.,

Linx House, 104 Waterloo Rd, Mablethorpe, LN12 1LE, UK.

Design Office TSA Consulting Engineers Ted Singleton 4 BLACKWATER HOUSE MALLOW BUSINESS PARK GOULDS HILL MALLOW CO. CORK P51 KC8C Phone: 0868168300 ted@tsaconsulteng.ie tsaconsulteng.ie

MASONRY FIXINGS

Unit 83, Cherry Orchard Industrial Estate Dublin 10 Phone: +353 1 642 6700 Fax: +353 1 626 2197 technical@masonryfixings.ie www.masonryfixings.ie

<u>Comment</u>

1983-1_Glassloc Juliette_Connection to Concrete Design - Side Fixed – Span of 2000mm_0

Design Specifications

Anchor

Anchor system Anchor	fischer Concrete screw ULTRACUT FBS II Concrete screw with hexagon head and washer FBS II 8x70 20/5 US TX, zinc plated steel, with filling disc	
Calculated anchorage depth	40 mm	
Design Data	Anchor design in Concrete according European Technical Assessment ETA-15/0352, Option 1, Issued 05/10/2020	

C-FIX 1.122.0.0 Database version 2024.3.11.15.56 Date 03/04/2024

Geometry / Loads / Scale units

mm, kN, kNm

Value of design actions (including

partial safety factor for the load)

Not drawn to scale

Input data

Design method	EN 1992-4:2018 mechanical fastener
Base material	C30/37, EN 206
Concrete condition	Cracked, dry hole
Reinforcement	No or standard reinforcement. No edge reinforcement. With reinforcement against splitting
Drilling method	Hammer drilling
Installation type	Push-through installation
Annular gap	Annular gap filled
Type of loading	Permanent-Transient/Static
Base plate location	Base plate flush installed on base material
Base plate geometry	41 mm x 600 mm x 5 mm
Profile type	None

Design actions *)

#	N _{Ed} kN	V _{Ed,x} kN	V _{Ed,y} kN	M ∈d,x kNm	M_{Ed,y} kNm	М т, _{Ed} kNm	Type of loading
1	0.00	2.25	0.00	0.00	0.00	0.00	Permanent-Transient/Static

*) The required partial safety factors for actions are included

Resulting anchor forces

Anchor no.	Tensile action kN	Shear Action kN	Shear Action x kN	Shear Action y kN
1	0.00	0.75	0.75	0.00
2	0.00	0.75	0.75	0.00
3	0.00	0.75	0.75	0.00

max. concrete compressive strain : max. concrete compressive stress : Resulting tensile actions : Resulting compression actions :

Resistance to shear loads

Proof	Action kN	Capacity kN	Utilisation βv %
Steel failure without lever arm *	0.75	8.73	8.6
Concrete pry-out failure	0.75	5.63	13.3
Concrete edge failure	0.75	3.54	21.2

‰

N/mm²

kN , X/Y position (/) kN , X/Y position (/)

* Most unfavourable anchor

Steel failure without lever arm

$$V_{Ed}~\leq~rac{V_{Rk,s}}{\gamma_{Ms}}$$
 (V_{Rd,s})

 $V_{Rk,s} = k_7 \cdot V_{Rk,s}^0 = 1.00 \cdot 13.10 kN = 13.10 kN$

V _{Rk,s}	Yмs	V _{Rd,s}	V _{Ed}	βvs
kN		kN	kN	%
13.10	1.50	8.73	0.75	8.6

Anchor no.	βvs %	Group N°	Decisive Beta
1	8.6	1	βvs;1
2	8.6	2	βvs;2
3	8.6	3	βvs;3

The input values and the design results should be checked against local valid standards and approvals. Please respect the disclaimer of warranty in the license agreement of the Software.

₩ ←	

A

0

Eq. (7.35)/ (7.36)

C-FIX 1.122.0.0 Database version 2024.3.11.15.56 Date 03/04/2024

Concrete pry-out failure

$$V_{Ed}~\leq~rac{V_{Rk,cp}}{\gamma_{Mc}}$$
 (V_{Rd,cp})

$$V_{Rk,cp} = k_8 \cdot N_{Rk,c} = 1 \cdot 8.45 kN = 8.45 kN$$
 Eq. (7.39a)

$$N_{Rk,c} = N_{Rk,c}^{0} \cdot \frac{A_{c,N}}{A_{c,N}^{0}} \cdot \Psi_{s,N} \cdot \Psi_{re,N} \cdot \Psi_{ec,N} \cdot \Psi_{M,N}$$
 Eq. (7.1)

$$N_{Rk,c} = 10.67kN \cdot \frac{12,000mm^2}{14,400mm^2} \cdot 0.950 \cdot 1.000 \cdot 1.000 \cdot 1.000 = 8.45kN$$

$$\Psi_{s,N} = 0.7 + 0.3 \cdot \frac{c}{c_{cr,N}} = 0.7 + 0.3 \cdot \frac{50mm}{60mm} = 0.950 \le 1$$
 Eq. (7.4)

$$\Psi_{re,N}~=~1.000$$

$$\Psi_{ec,N} = \frac{1}{1 + \frac{2e_n}{s_{cr,N}}} \implies \Psi_{ec,Nx} \cdot \Psi_{ec,Ny} = 1.000 \cdot 1.000 = 1.000 \le 1$$

$$\Psi_{M,N}~=~1.00~\geq~1$$

V _{Rk,cp}	Ү Мс	V _{Rd,cp}	V _{Ed}	β _{ν,cp}
kN		kN	kN	%
8.45	1.50	5.63	0.75	13.3

Anchor no.	β _{ν,cp}	Group N°	Decisive Beta
1	13.3	1	β _{V,cp;1}
2	13.3	2	β _{V,cp;2}
3	13.3	3	βv,cp;3

Concrete edge failure

$$V_{Ed}~\leq~rac{V_{Rk,c}}{\gamma_{Mc}}$$
 (Vrd,c)

$$V_{Rk,c} = V_{Rk,c}^{0} \cdot \frac{A_{c,V}}{A_{c,V}^{0}} \cdot \Psi_{s,V} \cdot \Psi_{h,V} \cdot \Psi_{\alpha,V} \cdot \Psi_{ec,V} \cdot \Psi_{re,V}$$

$$V_{Rk,c} = 5.32kN \cdot \frac{11,250mm^{2}}{11,250mm^{2}} \cdot 1.000 \cdot 1.000 \cdot 1.000 \cdot 1.000 = 5.32kN$$

$$V_{Rk,c}^{0} = k_{9} \cdot d_{nom}^{\alpha} \cdot l_{f}^{\beta} \cdot \sqrt{f_{ck}} \cdot c_{1}^{1.5}$$

$$Eq. (7.40)$$

$$V_{Rk,c}^{0} = 1.7 \cdot \left(8mm\right)^{0.100} \cdot \left(50mm\right)^{0.069} \cdot \sqrt{30.0N/mm^{2}} \cdot \left(50mm\right)^{1.5} = 5.32kN$$

$$\alpha = 0.1 \cdot \sqrt{\frac{l_{f}}{c_{1}}} = 0.1 \cdot \sqrt{\frac{50mm}{50mm}} = 0.100 \qquad \beta = 0.1 \cdot \left(\frac{d_{nom}}{c_{1}}\right)^{0.2} = 0.1 \cdot \left(\frac{8mm}{50mm}\right)^{0.2} = 0.069 \qquad (7.42/7.43)$$

The input values and the design results should be checked against local valid standards and approvals. Please respect the disclaimer of warranty in the license agreement of the Software.

Eq. (7.40)

Eq. (7.5) Eq. (7.6)

Eq. (7.7)

$$\Psi_{s,V} = 0.7 + 0.3 \cdot \frac{c_2}{1.5c_1} = 0.7 + 0.3 \cdot \frac{75mm}{1.5 \cdot 50mm} = 1.000 \le 1$$

$$\Psi_{h,V} = max \left(1; \sqrt{\frac{1.5c_1}{h}}\right) = max \left(1; \sqrt{\frac{1.5 \cdot 50mm}{150mm}}\right) = 1.000 \ge 1$$
Eq. (7.46)

$$\Psi_{\alpha,V} = \sqrt{\frac{1}{\left(\cos \alpha_V\right)^2 + \left(0.5 \cdot \sin \alpha_V\right)^2}} = \sqrt{\frac{1}{\left(\cos 0.0\right)^2 + \left(0.5 \cdot \sin 0.0\right)^2}} = 1.000 \ge 1$$
Eq. (7.48)

$$\Psi_{ec,V} = \frac{1}{1 + \frac{2}{3} \frac{e_v}{c_1}} = \frac{1}{1 + \frac{2 \cdot 0mm}{3 \cdot 50mm}} = 1.000 \le 1$$

 $\Psi_{re,V} = 1.000$

V _{Rk,c}	Yмс	V _{Rd,c}	V _{Ed}	βν,c
kN		kN	kN	%
5.32	1.50	3.54	0.75	21.2

Anchor no.	βv,c %	Group N°	Decisive Beta
1	21.2	1	βv,c;1
2	21.2	2	β _{V,c;2}
3	21.2	3	βv,c;3

Resistance to combined tensile and shear loads

β_V	=	$\beta_{V,c;1}$	=	0.21	\leq
, ,		, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			

Proof successful

Information concerning the anchor plate

1

Base plate details

Plate thickness specified by user without proof

Profile type

t = 5 mm

None

Technical remarks

The transmission of the anchor loads to the supports of the concrete member shall be shown for the ultimate limit state and the serviceability limit state; for this purpose, the normal verifications shall be carried out under due consideration of the actions introduced by the anchors. For these verifications the additional provisions given in the current design method shall be taken into account.

As a pre-condition the anchor plate is assumed to be flat when subjected to the actions. Therefore, the plate (if present) must be sufficiently stiff. The C-Fix anchor plate design is based on a proof of stresses and does not allow a statement about the stiffness of the plate. The proof of the necessary stiffness is not carried out by C-Fix.

During the design process, the following hints and warnings were issued:

• Filling Washer Required

C-FIX 1.122.0.0 Database version 2024.3.11.15.56 Date 03/04/2024

Installation data

Anchor

Anchor system	fischer Concrete screw ULTRACUT FBS II	
Anchor	Concrete screw with hexagon head and washer FBS II 8x70 20/5 US TX, zinc plated steel, with filling disc	ArtNo. 536852
Accessories	FFD 26x12x6 Blow-out pump ABG big Quattric II 8/100/165 The calculation consists a special washer. With the filling washer it is assured that the gap between plate and anchor is eliminated and the shear load is transfered to every anchor in equal parts.	ArtNo. 538458 ArtNo. 567792 ArtNo. 549988

Installation details

Thread diameter Drill hole diameter Drill hole depth Calculated anchorage depth Installation depth Drilling method Borehole cleaning

Installation type Annular gap Maximum torque Socket size Base plate thickness Total fixing thickness Tfix,max

 $d_0 = 8 \text{ mm}$ h₂ = 80 mm h_{ef} = 40 mm

 $h_{nom} = 50 \text{ mm}$ Hammer drilling Clear the borehole with a hand blower. Push-through installation Annular gap filled

13 mm t = 5 mm t_{fix} = 11 mm t_{fix, max} = 20 mm

C-FIX 1.122.0.0 Database version 2024.3.11.15.56 Date 03/04/2024

Base plate details

Base plate material Base plate thickness Clearance hole in base plate Not available t = 5 mm d_f=12 mm

Attachment

Profile type

None

Anchor coordinates

	х	v
Anchor no.	mm	mm
1	-2.5	200
2	-2.5	0
3	-2.5	-200

