

SPIGOT TECHNICAL DRAWINGS

KS4050 SPIGOT'S DETAILED ANALYSIS REPORT

2022

ANALYSIS REPORT

CONTENTS

List	of Figures		2
List	of Tables .		3
KS4	050 SPIGC	тт	4
1.	MATERIA	NLS	5
Ρ	roperties	of Glass	5
Ρ	roperties	of 6063 T6 Aluminum Alloy	5
2.	DESIGN F	PARAMETERS	5
3.	LOAD CC	MBINATIONS	6
4.	SPIGOT'S	ANALYSIS	6
4	.1 LOADS		6
	4.1.1	WIND LOAD (W)	6
	4.1.2	DEAD LOAD (DL)	6
	4.1.3	LİVE LOAD (Q)	6
4	.2 GLASS	MODEL IN ANALYSIS	7
	4.2.1	GLASS MODEL	7
	4.2.2	LOAD ASSIGNMENT	8
	4.2.3	DISPLACEMENT CHECK FOR TEMPERED GLASS	11
	4.2.4	STRESS CHECK FOR TEMPERED GLASS	13
	4.2.5 MA	XIMUM LIMITS FOR TEMPERED GLASS	15
Imp	ortant No	te	16
4	.3 SPIC	GOT'S ANALYSIS MODEL	17
	4.3.1	LOAD ASSIGNMENT	17
	4.3.2 ST	RESS AND DEFORMATION CHECK FOR SPIGOTS	19
4	.4 FAS	TENER for BALUSTRADE	31
4	.5 ANCHC	DR DESİGN	32
5	. MAXIN	AUM LIMITS FOR KS4050 SYSTEM	42
Imp	ortant No	te	43
Арр	endix		44
1	. Prope	rties of 6063 T6 Aluminum Alloy	45
2	. Handr	ails details	46

ANALYSIS REPORT

List of Figures

Figure 1 Complete Line Details (Front View)	
Figure 2. Glass Model for Analysis (Shell Model)	
Figure 3. Dead and live Load (DL + Q) for 17.52mm Glass	
Figure 4. Dead and wind Load (DL + W) for 17.52mm Glass	10
Figure 5. Displacement Check (DL + W) load combination	11
Figure 6. Displacement Check (DL + Q) load combination	12
Figure 7: Stress Check (DL + W) load combination	
Figure 8. Stress Check (DL + Q) load combination	14
Figure 9. The materials used in the analysis phase	17
Figure 10. The Quality of the mesh	
Figure 11. (1.35D + 1.5W) load combination assignment	
Figure 12. (1.35D + 1.5Q) load combination assignment	18
Figure 13. Stress Check for KS4050 system under (1.35DL+1.5W) load combination	19
Figure 14. Deformation Check for KS4050 system under (1.35DL+1.5W) load combination	
Figure 15. Stress Check for KS4050 under (1.35DL+1.5W) load combination	
Figure 16. Deformation Check for KS4050 under (1.35DL+1.5W) load combination	
Figure 17. Stress Check for Part_1 of KS4050 under (1.35DL+1.5W) load combination (Front View)	21
Figure 18. Stress Check for Part_1 of KS4050 under (1.35DL+1.5W) load combination (Back View)	21
Figure 19. Stress Check for Part_2 of KS4050 under (1.35DL+1.5W) load combination (Front View)	22
Figure 20. Stress Check for Part_2 of KS4050 under (1.35DL+1.5W) load combination (Back View)	22
Figure 21. Stress Check for Part_3 of KS4050 under (1.35DL+1.5W) load combination (Front View)	23
Figure 22. Stress Check for Part_3 of KS4050 under (1.35DL+1.5W) load combination (Bottom View)	23
Figure 23. Directional deformation check (Y-axis) under (1.35DL+1.5W) load combination	24
Figure 24. Stress Check for KS4050 system under (1.35DL+1.5Q) load combination	25
Figure 25. Deformation Check for KS4050 system under (1.35DL+1.5 Q) load combination	25
Figure 26. Stress Check for KS4050 under (1.35DL+1.5 Q) load combination	26
Figure 27. Deformation Check for KS4050 under (1.35DL+1.5 Q) load combination	26
Figure 28. Stress Check for Part_1 of KS4050 under (1.35DL+1.5 Q) load combination (Front View)	
Figure 29. Stress Check for Part_1 of KS4050 under (1.35DL+1.5 Q) load combination (Back View)	27
Figure 30. Stress Check for Part_2 of KS4050 under (1.35DL+1.5Q) load combination (Front View)	28
Figure 31. Stress Check for Part_2 of KS4050 under (1.35DL+1.5Q) load combination (Back View)	28
Figure 32. Stress Check for Part_3 of KS4050 under (1.35DL+1.5Q) load combination (Front View)	29
Figure 33. Stress Check for Part_3 of KS4050 under (1.35DL+1.5Q) load combination (Bottom View)	29
Figure 34. Directional deformation check (Y-axis) under (1.35DL+1.5Q) load combination	30
Figure 35. Aluminium design manual (2010) - The Aluminium Association	45

ANALYSIS REPORT

List of Tables

Table 1. Load Combinations (Serviceability and Ultimate limit state)	6
Table 2. KS 4050 Glass analysis Results / without handrails	15
Table 3. KS 4050 Glass analysis Results / with handrails	15
Table 4. Forces affecting on the anchorage elements	31
Table 5. KS 4050 Glass-spigot analysis Results / without handrails	42
Table 6. KS 4050 Glass analysis Results / with handrails	42

ANALYSIS REPORT

KS4050 SPIGOT

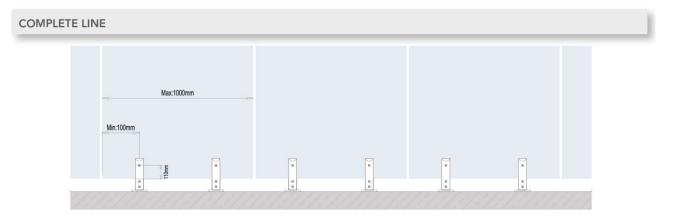


Figure 1 Complete Line Details (Front View)

ANALYSIS REPORT

1. MATERIALS

ies of Glass	(Based on the ASTM E1300-12A)
Modulus of Elasticity	E= 7.1*10 ⁹ kg/m ²
Poisson Ratio	μ= 0.22
Coefficient of Linear Expansion	$\alpha = 8.8 \times 10^{-6} \text{ C}^{-1}$
Density	ρ = 2500 kg/m ³
Max allowable stress for fully tempered glass	100 Mpa
Acceptable allowable (as per ASTM C- 1040-04)	67 Mpa
Glass deflection allowable	L/60 mm
Properties of Interlayers (Trsifol PVB)	
Density	ρ= 1065 kg/m ³
Tensile Strength	2.3*106 kg/m ³
	Poisson Ratio Coefficient of Linear Expansion Density Max allowable stress for fully tempered glass Acceptable allowable (as per ASTM C- 1040-04) Glass deflection allowable Properties of Interlayers (Trsifol PVB) Density

Properties of 6063 T6 Aluminum Alloy

(Based on DIN 4113-1/A1)	
Modulus of Elasticity	E= 71.000 kg/cm ²
Poisson Ratio	μ= 0.33
Shear Modulus	G= 266917 kg/cm ²
Coefficient of Linear Expansion	α= 2.385x10 ⁻⁵ K ⁻¹
> Density	ρ = 2.7e-03 kg/cm ³
Yield Strength	Fy= 215 Mpa

2. DESIGN PARAMETERS

Aluminum material stress controls will be made in accordance with **EN 1999-1-1** specification.

Deflection controls will be made in accordance with **BS6180:2011** specification.

ANALYSIS REPORT

3. LOAD COMBINATIONS

Table 1. Load Combinations (Serviceability and Ultimate limit state)

Serviceability Limit State:	Ultimate Limit State (for Anchor fixing)		
1) 1.0DL + 1.0W	2) 1.35DL + 1.5W		
3) 1.0DL + 1.0Q	4) 1.35DL + 1.5Q		

4. SPIGOT'S ANALYSIS

4.1 LOADS

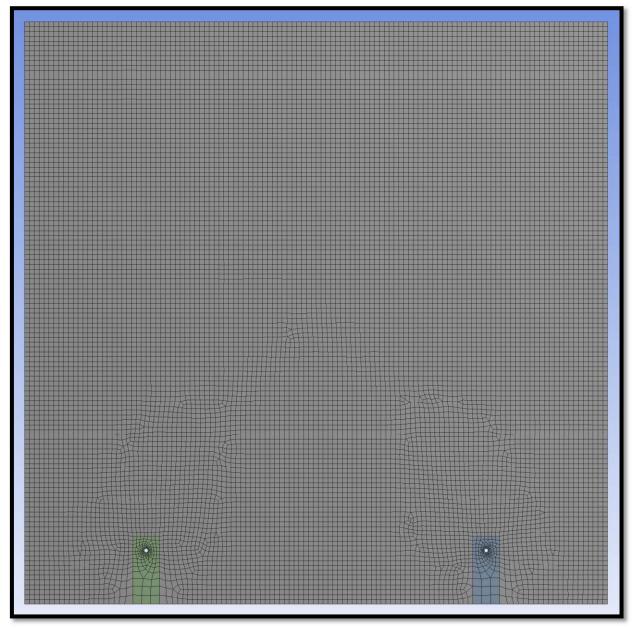
4.1.1 WIND LOAD (W)

 \rightarrow W = 1.35 kN/m²

4.1.2 DEAD LOAD (DL)

> DL: Self weight of the glass panel

4.1.3 LİVE LOAD (Q)


➢ Q = 1 kN/m

ANALYSIS REPORT

4.2 GLASS MODEL IN ANALYSIS

4.2.1 GLASS MODEL

1.2m Height , 1.2 m Width and 17.52mm Thickness

Glass Model

Figure 2. Glass Model for Analysis (Shell Model)

ANALYSIS REPORT

4.2.2 LOAD ASSIGNMENT

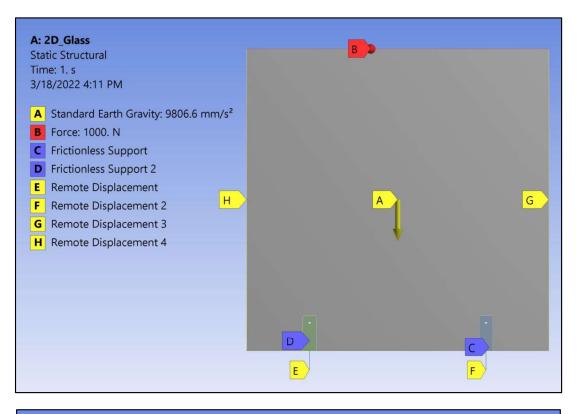


Figure 3. Dead and live Load (DL + Q) for 17.52mm Glass

ANALYSIS REPORT

4.2.2.1 EXPLAINING SUPPORTS AND LOADS

- At **C** and **D** the **frictionless support** (surface support) constrains the **translation** on **x** axis (the direction perpendicular to the surface of glass).

- At **E** and **F** the **remote displacement (Line support)** constrains the **translation** on **y** axis (the direction of the acceleration of earth's gravity) to simulate the KS4050 Spigot from the bottm.

- At **H** and **G** the **remote displacement (Line support)** constrains the **translation** on **z** axis to prevent the glass from the movement to the right of the left side.

- **B** is a **line force** that affects on the top edge of the glass (1kN) as shown in **figure 3**.

- **H** is a **Pressue Load** that affects on the front surface of the glass (1.35 kN/m²) as shown in **figure 4**.

ANALYSIS REPORT

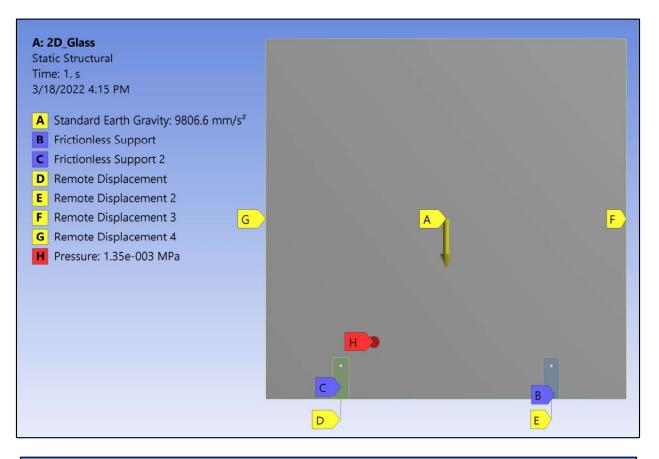


Figure 4. Dead and wind Load (DL + W) for 17.52mm Glass

ANALYSIS REPORT

4.2.3 DISPLACEMENT CHECK FOR TEMPERED GLASS

Under the dead and wind load (DL + W), 8mm+8mm tempered glass had a displacement value of 8.31 mm. The allowable value of deformation for tempered glass is L/60 = 1200/ 60 = 20 mm or 25mm (which is smaller). Therfore tempered glass meets design criteria.

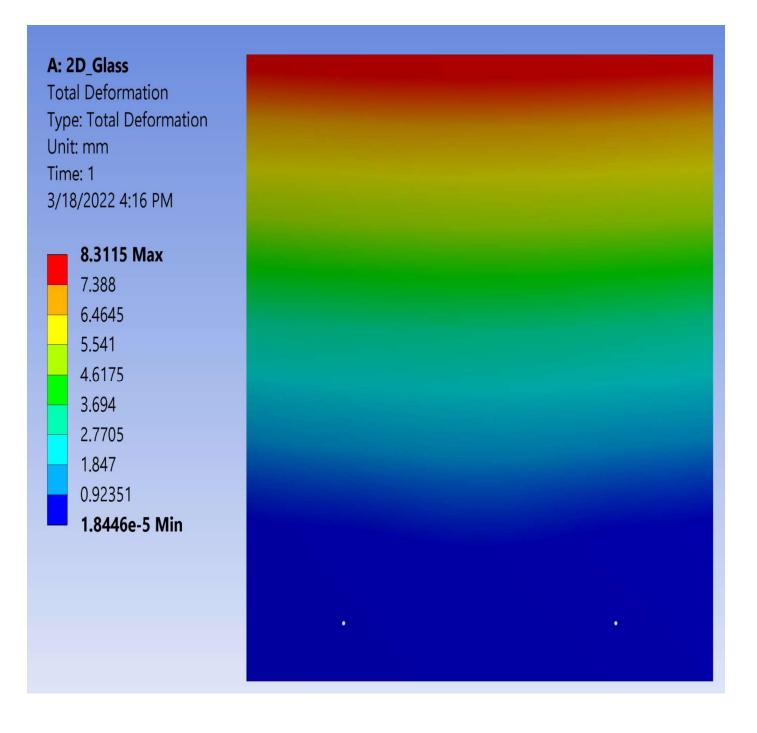


Figure 5. Displacement Check (DL + W) load combination

ANALYSIS REPORT

Under the dead and live load (DL + Q), 8mm+8mm tempered glass had a displacement value of 12.287 mm. The allowable value of deformation for tempered glass is L/60 = 1200/ 60 = 20 mm or 25mm (which is smaller). Therfore tempered glass meets design criteria.

A: 2D_Glass	
Total Deformation	
Type: Total Deformation	
Unit: mm	
Time: 1	
3/18/2022 4:14 PM	
12.287 Max	
10.922	
9.5566	
8.1914	
6.8262	
5.4609	
4.0957	
2.7305	
1.3652	
1.8446e-5 Min	

Figure 6. Displacement Check (DL + Q) load combination

ANALYSIS REPORT

4.2.4 STRESS CHECK FOR TEMPERED GLASS

• Under (DL + W) load combination, maximum stress on 8mm+8mm temperded glass is 36.6 MPa. This value is smaller than tempered glass acceptable allowable stress limit of 67 MPa. So the glass is adaquate enough to resist applied loads.

A: 2D_Glass Equivalent Stress Type: Equivalent (von-Mises) Stress - Top/Bo <mark>ttom</mark> Unit: MPa
/18/2022 4:16 PM
36.656 Max
32.584
28.513
24.442
20.37
16.299
12.227
8.1559
4.0845
0.013039 Min

Figure 7: Stress Check (DL + W) load combination

ANALYSIS REPORT

Under (DL + Q) load combination, maximum stress on 8mm+8mm temperded glass is 41.9 MPa. This value is smaller than tempered glass acceptable allowable stress limit of 67 MPa. So the glass is adaquate enough to resist applied loads.

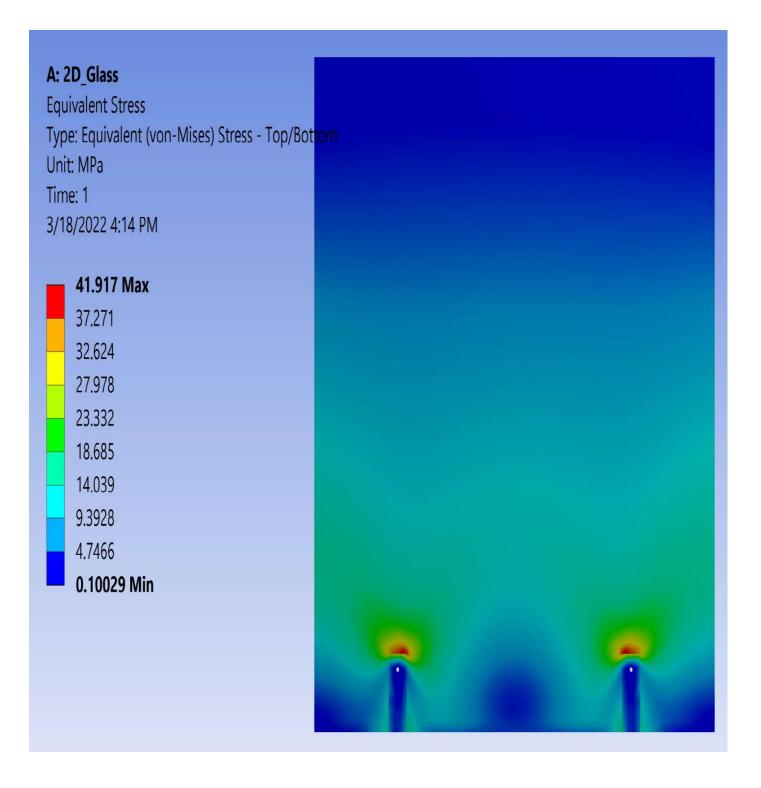


Figure 8. Stress Check (DL + Q) load combination

ANALYSIS REPORT

4.2.5 MAXIMUM LIMITS FOR TEMPERED GLASS

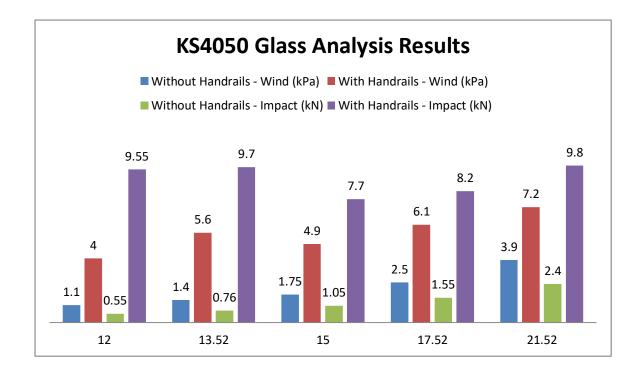

Calculations of the maximum wind and Impact loads were made based on the analysis for glasses with width of 1.2m and height of 1.2m.

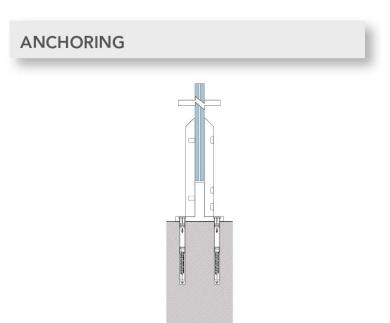
Table 2. KS 4050 Glass analysis Results / without handrails

	1.2 m height, 1.2 m width						
	12 mm Glass 13.52 mm Glass 15 mm Glass 17.52 mm Glass 21.52 mm						
	kN/m2	kN/m2	kN/m2	kN/m2	kN/m2		
Max Wind	1.1	1.4	1.75	2.5	3.9		
	kN/m	kN/m	kN/m	kN/m	kN/m		
Max Impact	0.55	0.76	1.05	1.55	2.4		

Table 3. KS 4050 Glass analysis Results / with handrails

	1.2 m height, 1.2 m width						
	12 mm Glass 13.52 mm Glass 15 mm Glass 17.52 mm Glass 21.52 mm Gl						
	kN/m2	kN/m2	kN/m2	kN/m2	kN/m2		
Max Wind:	4	5.6	4.9	6.1	7.2		
	kN/m	kN/m	kN/m	kN/m	kN/m		
Max Impact:	9.55	9.7	7.7	8.2	9.8		

ANALYSIS REPORT


Important Note

- Under wind loads of 1.8 kPa, and for glasses with thickness of 21.52mm, 17.52mm, and 15mm the reaction forces affecting on each wall connector for any mounted handrail approximately equals to 460 N.
- Under wind loads of 1.8 kPa, and for glasses with thickness of 13.52mm, and 12 mm the reaction forces affecting on each wall connector for any mounted handrail approximately equals to 500 N.
- Under impact loads, for glass of any thickness the reaction forces affecting on each wall connector for any mounted handrail approximately equals to (impact load / 2).

<u>Example</u>

for KS 4050 Glass-spigot with handrails - 21.52 mm Glass ---> the reaction forces affecting on each wall connector equals to (9.8 / 2) = 4.9 kN

- The aforementioned reaction forces should be considered when selecting the wall connector of any handrail.

ANALYSIS REPORT

4.3 SPIGOT'S ANALYSIS MODEL

4.3.1 LOAD ASSIGNMENT

In the following sections the model and the applied combinations in the analysis phase were explained. The translations across (x,y,z) axis were restricted for the 8 holes existed in the bottom side of KS4050. Also frictionless contacts were used to simulate contacts between glass aluminum. Fixed joints were also used to model the behaviour of screws in order to minimize the computaional complexity of the moedel. The materials used in the analysis phase and the quality of the mesh were as follows:

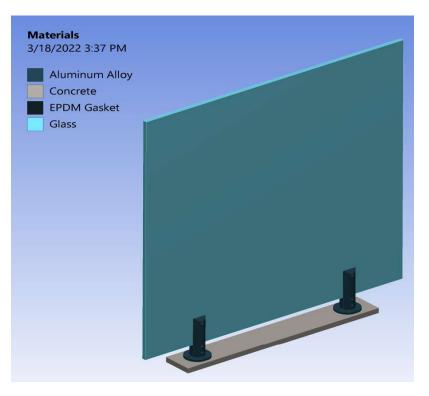
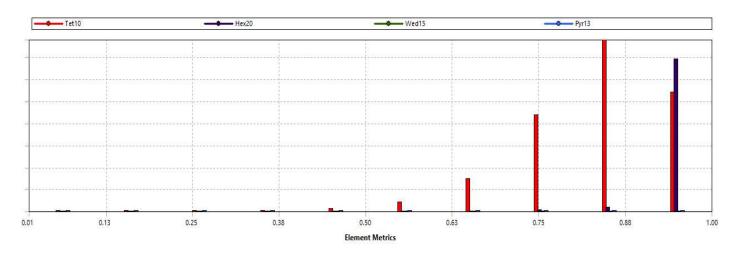
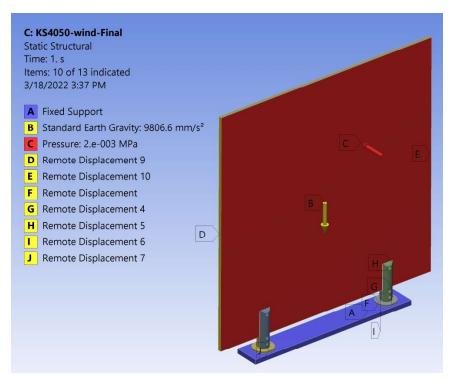


Figure 9. The materials used in the analysis phase




Figure 10. The Quality of the mesh

ANALYSIS REPORT

4.3.1.1 Wind AND IMPACT LOAD ASSIGNMENT(1.35D + 1.5 W)

For the load combination (1.35D+1.5W) we have used many boundary conditions as explained below.

Figure 11. (1.35D + 1.5W) load combination assignment

For the load combination (1.35D+1.5Q) we have used many boundary conditions as explained below.

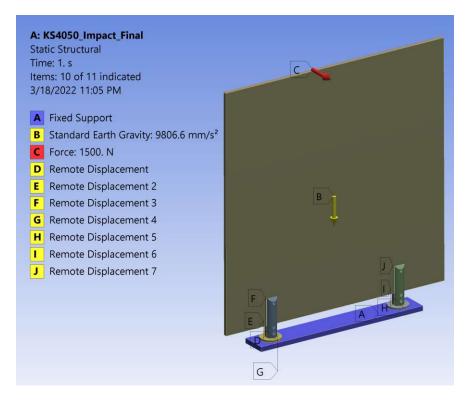


Figure 12. (1.35D + 1.5Q) load combination assignment

ANALYSIS REPORT

4.3.2 STRESS AND DEFORMATION CHECK FOR SPIGOTS

Maximum stress on KS 4050 due to **1.35DL + 1.5W** loading combination is **344.4 MPa**. Although this value is greater than AW6063 aluminum alloy yield stress of **215 MPa**, KS4050 can be considered safe, meets design criteria, and adequate to resist applied loads for a main reason which is: the model used for analysis was elastic model where there was no consideration for plasticity in which yielding was not considered. In addition, stress peaks are locally limited and non-critical as will be shown later.

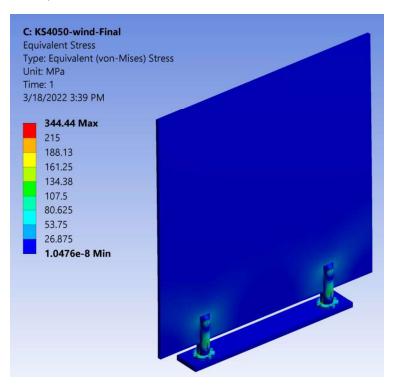


Figure 13. Stress Check for KS4050 system under (1.35DL+1.5W) load combination

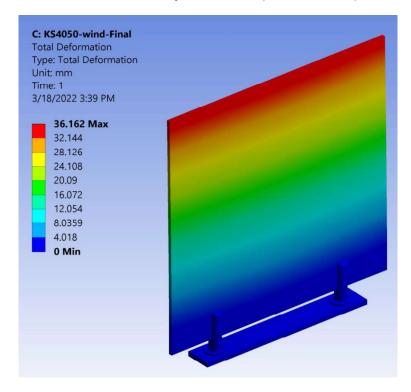


Figure 14. Deformation Check for KS4050 system under (1.35DL+1.5W) load combination

ANALYSIS REPORT

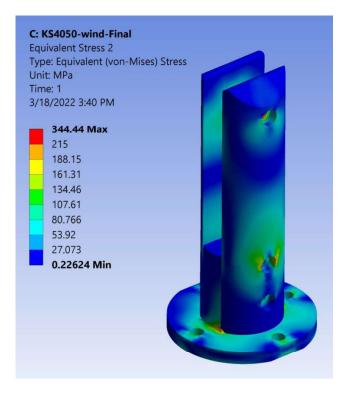
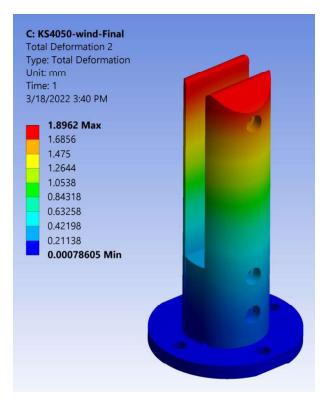



Figure 15. Stress Check for KS4050 under (1.35DL+1.5W) load combination

Figure 16. Deformation Check for KS4050 under (1.35DL+1.5W) load combination

ANALYSIS REPORT

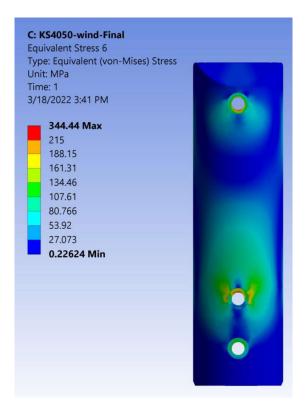


Figure 17. Stress Check for Part_1 of KS4050 under (1.35DL+1.5W) load combination (Front View)

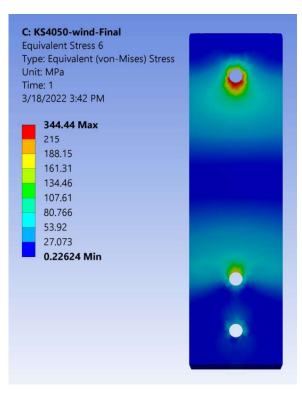


Figure 18. Stress Check for Part_1 of KS4050 under (1.35DL+1.5W) load combination (Back View)

ANALYSIS REPORT

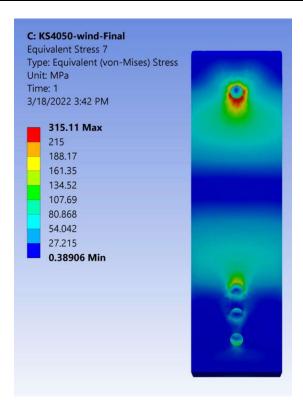


Figure 19. Stress Check for Part_2 of KS4050 under (1.35DL+1.5W) load combination (Front View)

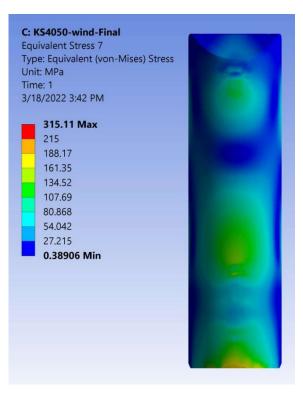


Figure 20. Stress Check for Part_2 of KS4050 under (1.35DL+1.5W) load combination (Back View)

ANALYSIS REPORT

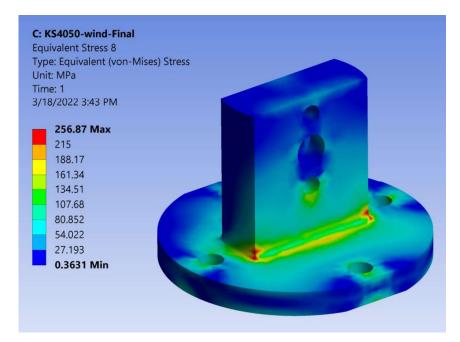


Figure 21. Stress Check for Part_3 of KS4050 under (1.35DL+1.5W) load combination (Front View)

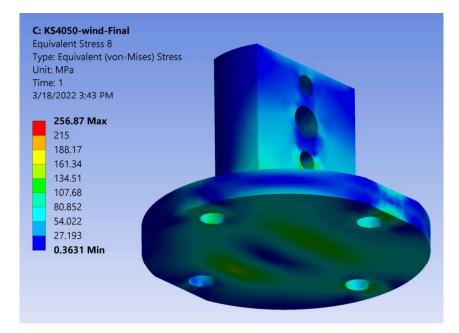


Figure 22. Stress Check for Part_3 of KS4050 under (1.35DL+1.5W) load combination (Bottom View)

ANALYSIS REPORT

Finally, as glasses with holes of a 25mm outer diameter are being used with KS4050 besides M8 screws, we need to check the directional deformation of Glass across Y axis to make sure that screws and glass don't collide. According to the following figure, the maximum deformation was 1.11 mm which is enough to prove that our desgin can be considered safe.

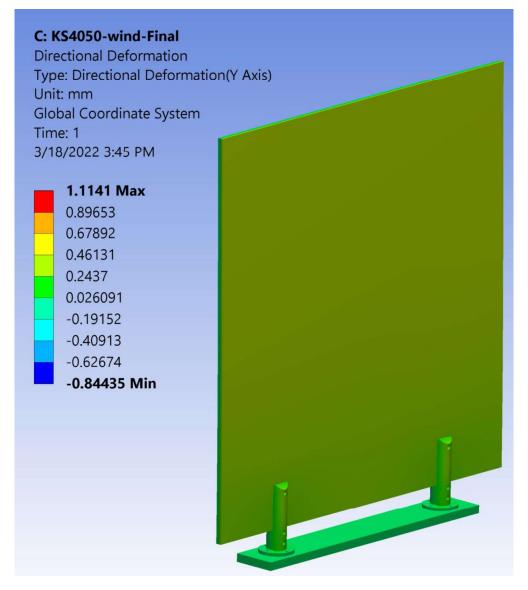


Figure 23. Directional deformation check (Y-axis) under (1.35DL+1.5W) load combination

ANALYSIS REPORT

Maximum stress on KS 4050 due to **1.35DL + 1.5Q** loading combination is **365.4 MPa**. Although this value is greater than AW6063 aluminum alloy yield stress of **215 MPa**, KS4050 can be considered safe, meets design criteria, and adequate to resist applied loads for a main reason which is: the model used for analysis was elastic model where there was no consideration for plasticity in which yielding was not considered. In addition, stress peaks are locally limited and non-critical as will be shown later.

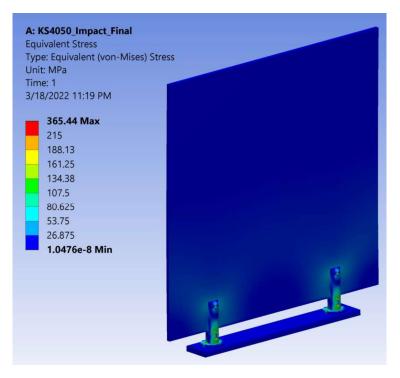


Figure 24. Stress Check for KS4050 system under (1.35DL+1.5Q) load combination

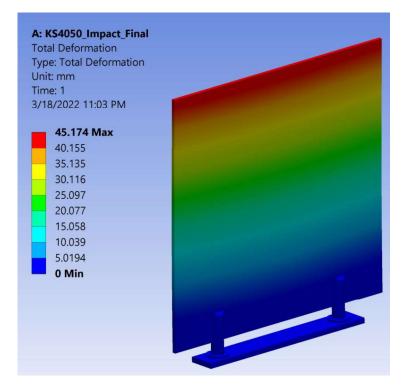
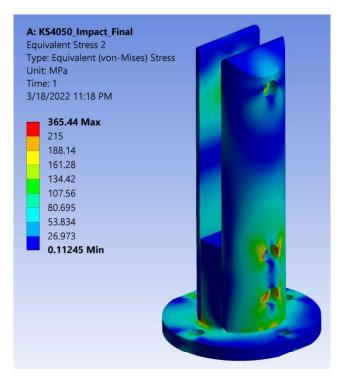



Figure 25. Deformation Check for KS4050 system under (1.35DL+1.5 Q) load combination

ANALYSIS REPORT

Figure 26. Stress Check for KS4050 under (1.35DL+1.5 Q) load combination

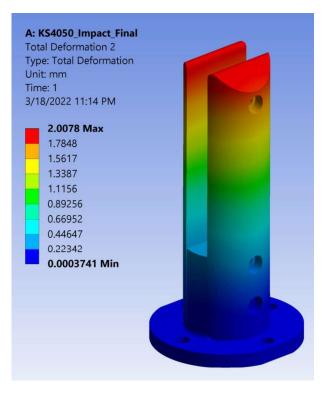


Figure 27. Deformation Check for KS4050 under (1.35DL+1.5 Q) load combination

ANALYSIS REPORT

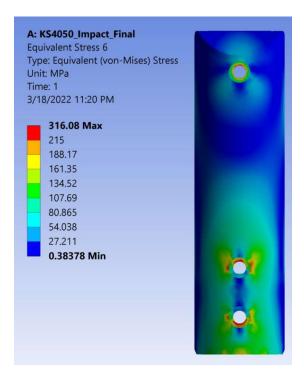


Figure 28. Stress Check for Part_1 of KS4050 under (1.35DL+1.5 Q) load combination (Front View)

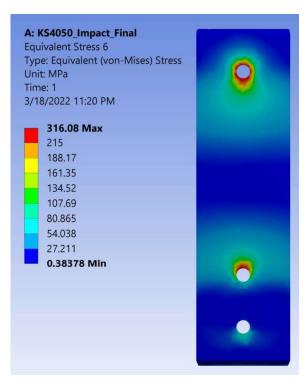


Figure 29. Stress Check for Part_1 of KS4050 under (1.35DL+1.5 Q) load combination (Back View)

ANALYSIS REPORT

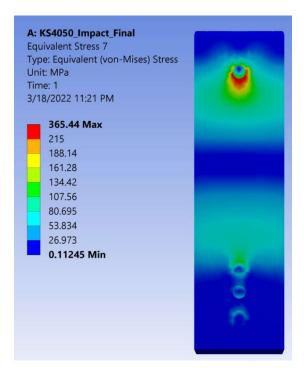


Figure 30. Stress Check for Part_2 of KS4050 under (1.35DL+1.5Q) load combination (Front View)

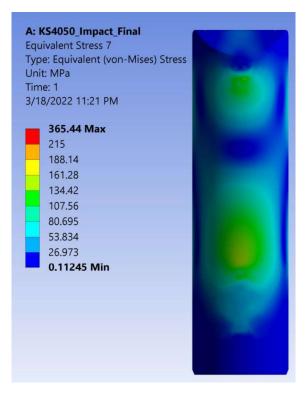


Figure 31. Stress Check for Part_2 of KS4050 under (1.35DL+1.5Q) load combination (Back View)

ANALYSIS REPORT

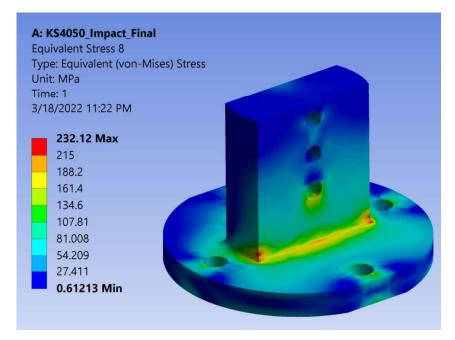


Figure 32. Stress Check for Part_3 of KS4050 under (1.35DL+1.5Q) load combination (Front View)

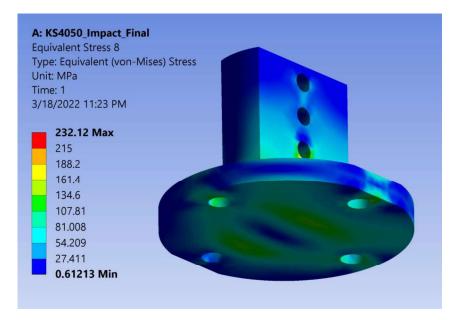


Figure 33. Stress Check for Part_3 of KS4050 under (1.35DL+1.5Q) load combination (Bottom View)

ANALYSIS REPORT

Finally, as glasses with holes of a 25mm outer diameter are being used with KS4050 besides M8 screws, we need to check the directional deformation of Glass across Y axis to make sure that screws and glass don't collide. According to the following figure, the maximum deformation was 1.28 mm which is enough to prove that our desgin can be considered safe.

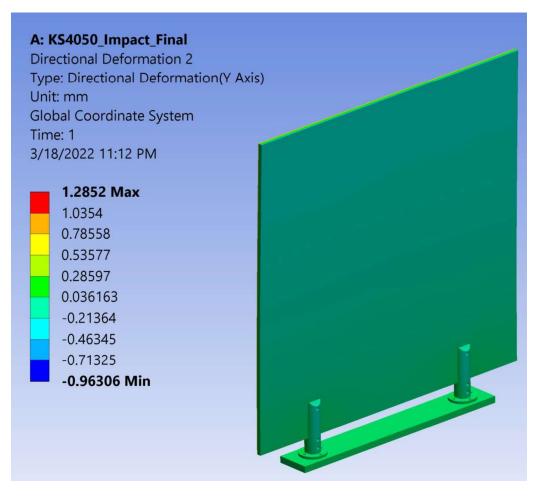


Figure 34. Directional deformation check (Y-axis) under (1.35DL+1.5Q) load combination

ANALYSIS REPORT

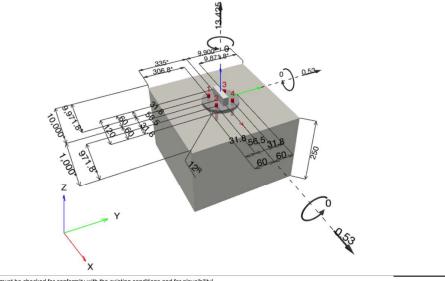
4.4 **FASTENER for BALUSTRADE**

In the analysis, it is assumed that the balustrade profile is connected to the ground with 8 anchorage element . However, number of anchorage elements may increase or decrease due to environmental conditions such as concrete grade and edge distances. In this section the forces affecting on 8 anchorage members were given in the below table (based on hand calculations)

Table 4. Forces affecting on the anchorage elements

	Anchor forces at ultimate limit state in kN					
	Glass height <u>1000</u> mm Glass height <u>1100</u> mm		Glass height <u>1200</u> mm			
KS4050	Tension	Shear	Tension	Shear	Tension	Shear
	-	-	-	-	26.85	1.5

ANALYSIS REPORT


4.5 ANCHOR DESİGN

Under maximum limit loading of Spigot, using 8 mechanical anchorage member (M10) with an embedded depth of 41.6 mm adequate enough to resist 26.85 kN tensile and 1.5 kN shear force.

Hilti PROFIS Engineering 3.0.76								
www.hilti.com.tr	www.hilti.com.tr							
Company: Address: Phone I Fax: Design: KS405 Fastening Point:	50 - M10X100	Page: Specifier: E-Mail: Date:	18.03.2022					
Specifier's comments:								
1 Input data			. An					
Anchor type and size:	HUS3-H 10 h_nom1	The first from the second	CCFGGEN					
Return period (service life in years):	50							
Item number:	2079912 HUS3-H 10x70 15/-/-							
Effective embedment depth:	h _{ef} = 41.6 mm, h _{nom} = 55.0 mm							
Material:	1.5525							
Approval No.:	ETA-13/1038							
Issued I Valid:	28.07.2020 -							
Proof:	Design Method EN 1992-4, Mechani	cal						
Stand-off installation:	e _b = 0.0 mm (no stand-off); t = 12.0 r	nm						
Baseplate ^R :	I _x x I _y x t = 120.0 mm x 120.0 mm x 1	2.0 mm; (Recommended plate thick	ness: not calculated)					
Profile:	Flat bar, 75 x 18; (L x W x T) = 75.0	mm x 18.0 mm						
Base material: cracked concrete, C25/30, $f_{c,cyl}$ = 25.00 N/mm ² ; h = 250.0 mm, User-defined partial material safety factor γ_c = 1.500								
Installation:	hammer drilled hole, Installation c	ondition: Dry						
Reinforcement:	No reinforcement or Reinforcement	pacing >= 150 mm (any Ø) or >= 10	00 mm (Ø <= 10 mm)					
	no longitudinal edge reinforcement							

 $^{\rm R}$ - The anchor calculation is based on a rigid baseplate assumption.

Geometry [mm] & Loading [kN, kNm]

Input data and results must be checked for conformity with the existing conditions and for plausibility! PROFIS Engineering (c) 2003-2022 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

1

ANALYSIS REPORT

Hilti PROFIS Engineering 3.0.76

Company:		Page:	2
Address:		Specifier:	
Phone I Fax:	1	E-Mail:	
Design:	KS4050 - M10X100	Date:	18.03.2022
Fastening Point:			

1.1 Load combination

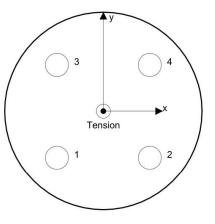
Case	Description	Forces [kN] / Moments [kNm]	Seismic	Fire	Max. Util. Anchor [%]
 1	Combination 1	N = 13.425; $V_x = 0.530; V_y = 0.530;$	no	no	93
		$M_x = 0.000; M_y = 0.000; M_z = 0.000;$			

2 Load case/Resulting anchor forces

Anchor reactions [kN]

Tension force: (+Tension, -Compression)

max. concrete compressive stress:


resulting tension force in (x/y)=(0.0/0.0):

resulting compression force in (x/y)=(0.0/0.0): 0.000 [kN]

Anchor	Tension force	Shear force	Shear force x	Shear force y
1	3.356	0.187	0.133	0.133
2	3.356	0.187	0.133	0.133
3	3.356	0.187	0.133	0.133
4	3.356	0.187	0.133	0.133

- [N/mm²]

13.425 [kN]

Anchor forces are calculated based on the assumption of a rigid baseplate.

Input data and results must be checked for conformity with the existing conditions and for plausibility! PROFIS Engineering (c) 2003-2022 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

ANALYSIS REPORT

Hilti PROFIS Engineering 3.0.76

www.hilti.com.tr			
Company:		Page:	3
Address:		Specifier:	
Phone I Fax:	1	E-Mail:	
Design:	KS4050 - M10X100	Date:	18.03.2022
Fastening Point:			

3 Tension load (EN 1992-4, Section 7.2.1)

	Load [kN]	Capacity [kN]	Utilization β _N [%]	Status
Steel failure*	3.356	44.429	8	OK
Pull-out failure*	3.356	6.708	51	OK
Concrete Breakout failure**	13.425	14.534	93	OK
Splitting failure**	N/A	N/A	N/A	N/A

* highest loaded anchor **anchor group (anchors in tension)

3.1 Steel failure

 $N_{Ed} \ \leq N_{Rd,s} = \frac{N_{Rk,s}}{\gamma_{M,s}} \qquad \qquad \text{EN 1992-4, Table 7.1}$

N _{Rk,s} [kN]	$\gamma_{M,s}$	N _{Rd,s} [kN]	N _{Ed} [kN]
62.200	1.400	44.429	3.356

3.2 Pull-out failure

 $N_{Ed} \ \leq N_{Rd,p} = \frac{\psi_{c} \cdot N_{Rk,p}}{\gamma_{M,p}} \qquad \qquad \text{EN 1992-4, Table 7.1}$

N _{Rk,p} [kN]	Ψc	γ _{M,p}	N _{Rd,p} [kN]	N _{Ed} [kN]
9.000	1.118	1.500	6.708	3.356

Input data and results must be checked for conformity with the existing conditions and for plausibility! PROFIS Engineering (c) 2003-2022 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

ANALYSIS REPORT

Hilti PROFIS Engineering 3.0.76

ompany:				Page:			4
ddress:					Specifier:		
Phone I Fax: Design: KS4050 - M10X100 Fastening Point:				E-Mail: Date:			
			Date.			18.03.2022	
3.3 Conci	rete Breako	out failure					
$N_{Ed} \leq N_{R}$	$_{d,c} = \frac{N_{Rk,c}}{\gamma_{M,c}}$			EN 1992-4	l, Table 7.1		
N _{Rk,c}	$= N_{Rk,c}^0 \cdot$	$\frac{A_{c,N}}{A_{c,N}^0} \cdot \psi_{s,N} \cdot \psi_{re,N} \cdot v$	$\Psi_{ec1,N} \cdot \Psi_{ec2,N} \cdot \Psi_{M,N}$	EN 1992-4	ł, Eq. (7.1)		
N ⁰ _{Rk.c}				EN 1992-4	4, Eq. (7.2)		
A ⁰ _{c,N}	$= \mathbf{s}_{cr,N} \cdot \mathbf{s}_{cr,N}$			EN 1992-4	EN 1992-4, Eq. (7.3)		
Ψ _{s,N}	0			EN 1992-4	EN 1992-4, Eq. (7.4)		
Ψ _{ec1,N}		$\frac{1}{\frac{2 \cdot e_{N,1}}{s}} \le 1.00$		EN 1992-4	ł, Eq. (7.6)		
Ψ ec2,N	$ \psi_{ec2,N} = \frac{1}{1 + \left(\frac{2 \cdot e_{N,2}}{2}\right)} \le 1.00 $			EN 1992-4	ł, Eq. (7.6)		
Ψ _{M,N}	= 1	s _{cr,N}		EN 1992-4	4, Eq. (7.7)		
A _{c,N}	[mm ²]	$A_{c.N}^0$ [mm ²]	c _{cr,N} [mm]	s _{cr,N} [mm]	f _{c,cyl} [N/mm ²]		
32,	870	15,575	62.4	124.8	25.00		
e _{c1,N}	[mm]	$\Psi_{ec1,N}$	e _{c2,N} [mm]	$\Psi_{ec2,N}$	$\Psi_{s,N}$	$\Psi_{\text{re,N}}$	
	0.0	1.000	0.0	1.000	1.000	1.000	-
z [r	mm]	Ψ _{M,N}	k ₁	N ⁰ _{Rk,c} [kN]	γ _{M,c}	N _{Rd.c} [kN]	N _{Ed} [kN]
0	.0	1.000	7.700	10.330	1.500	14.534	13.425

Group anchor ID

1-4

Input data and results must be checked for conformity with the existing conditions and for plausibility! PROFIS Engineering (c) 2003-2022 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

ANALYSIS REPORT

Hilti PROFIS Engineering 3.0.76

www.hilti.com.tr			
Company:		Page:	5
Address:		Specifier:	
Phone I Fax:	1	E-Mail:	
Design: Fastening Point:	KS4050 - M10X100	Date:	18.03.2022

4 Shear load (EN 1992-4, Section 7.2.2)

Load [kN]	Capacity [kN]	Utilization β _v [%]	Status
0.187	16.000	2	OK
N/A	N/A	N/A	N/A
0.750	14.534	6	OK
0.593	44.753	2	OK
	0.187 N/A 0.750	0.187 16.000 N/A N/A 0.750 14.534	0.187 16.000 2 N/A N/A N/A 0.750 14.534 6

* highest loaded anchor **anchor group (relevant anchors)

4.1 Steel failure (without lever arm)

$V_{Ed} \leq V_{Rd,s} = \frac{V_{Rk,s}}{\gamma_{M,s}}$	EN 1992	-4, Table 7.2			
$V_{\rm Rk,s} = k_7 \cdot V_{\rm Rk,s}^0$	EN 1992	-4, Eq. (7.35)			
V ⁰ _{Rk,s} [kN]	k ₇	V _{Rk,s} [kN]	$\gamma_{M,s}$	V _{Rd,s} [kN]	V _{Ed} [kN]
30.000	0.800	24.000	1.500	16.000	0.187

4.2 Pryout failure

$V_{\text{Ed}} \leq V_{\text{Rd,e}}$	$_{pp} = \frac{V_{Rk,cp}}{\gamma_{M,c,p}}$	EN 1992-4, Table 7.2
$V_{Rk,cp}$	$= k_8 \cdot N_{Rk,c}$	EN 1992-4, Eq. (7.39a)
N _{Rk,c}	$= N_{Rk,c}^{0} \cdot \frac{A_{c,N}}{A_{c,N}^{0}} \cdot \psi_{s,N} \cdot \psi_{re,N} \cdot \psi_{ec1,N} \cdot \psi_{ec2,N} \cdot \psi_{M,N}$	EN 1992-4, Eq. (7.1)
$N^0_{Rk,c}$ $A^0_{c,N}$	$= \mathbf{k}_{1} \cdot \sqrt{\mathbf{f}_{ck}} \cdot \mathbf{h}_{cf}^{1,5}$	EN 1992-4, Eq. (7.2)
$A^0_{c,N}$	$= s_{cr,N} \cdot s_{cr,N}$	EN 1992-4, Eq. (7.3)
$\psi_{s,N}$	$= 0.7 + 0.3 \cdot \frac{c}{c_{cr,N}} \le 1.00$	EN 1992-4, Eq. (7.4)
$\psi_{\text{ ec1,N}}$	$=\frac{1}{1+\left(\frac{2\cdot e_{V,1}}{s_{cr,N}}\right)} \le 1.00$	EN 1992-4, Eq. (7.6)
$\psi_{\text{ ec2},\text{N}}$	$=\frac{1}{1+\left(\frac{2\cdot e_{V,2}}{s_{cr,N}}\right)} \le 1.00$	EN 1992-4, Eq. (7.6)
$\psi_{\text{ M,N}}$	= 1	EN 1992-4, Eq. (7.7)

A _{c,N} [mm ²]	$A_{c,N}^0$ [mm ²]	c _{cr,N} [mm]	s _{cr,N} [mm]	k ₈	f _{c,cyl} [N/mm ²]	
32,870	15,575	62.4	124.8	1.000	25.00	
e _{c1,V} [mm]	$\Psi_{\text{ec1,N}}$	e _{c2,V} [mm]	$\Psi_{ec2,N}$	$\Psi_{s,N}$	$\psi_{\text{re,N}}$	$\psi_{M,N}$
0.0	1.000	0.0	1.000	1.000	1.000	1.000
k ₁	N ⁰ _{Rk,c} [kN]	γ _{M,c,p}	V _{Rd,cp} [kN]	V _{Ed} [kN]		
7.700	10.330	1.500	14.534	0.750		

Group anchor ID

1-4

ANALYSIS REPORT

Hilti PROFIS Engineering 3.0.76

www.hilti.com.tr			
Company:		Page:	6
Address:		Specifier:	
Phone I Fax:	Ĩ.	E-Mail:	
Design: Fastening Point:	KS4050 - M10X100	Date:	18.03.2022

4.3 Concrete edge failure in direction x+

V < V-	$_{\rm kd,c} = \frac{V_{\rm Rk,c}}{\gamma_{\rm M,c}}$			EN 1992-4	Table 7.2			
		۵		EN 1002 4				
V _{Rk,c}	$= k_{T} \cdot V_{Rk,c}^{0}$	$\cdot \frac{\Lambda_{c,V}}{\Lambda_{c,V}^0} \cdot \Psi_{s,V} \cdot \Psi_{h,V}$	$\psi_{\alpha,V} \cdot \psi_{ec,V} \cdot \psi_{re,V}$	EN 1992-4,	, Eq. (7.40)			
$V^0_{\rm Rk,c}$	$= k_9 \cdot d_{nom}^{\alpha}$	$\cdot I_f^{\beta} \cdot \sqrt{f_{ck}} \cdot c_1^{1,5}$		EN 1992-4	, Eq. (7.41)			
α	$= 0.1 \cdot \left(\frac{l_f}{c_1}\right)$	·) ^{0,5}		EN 1992-4,	, Eq. (7.42)			
β	$= 0.1 \cdot \left(\frac{d_r}{d}\right)$			EN 1992-4,	, Eq. (7.43)			
A ⁰ _{c,V}	$= 4.5 \cdot c_1^2$	1		EN 1992-4	EN 1992-4, Eq. (7.44)			
$\psi_{s,V}$	Co			EN 1992-4, Eq. (7.45)				
$\psi_{h,V}$	$= \left(\frac{1.5 \cdot c_1}{h}\right)^{0.5} \ge 1.00$			EN 1992-4, Eq. (7.46)				
$\psi_{\text{ ec,V}}$	$=\frac{1}{1+\left(\frac{2}{3}\right)}$	$\overline{\underline{\mathbf{e}_V}} = 1.00$		EN 1992-4	, Eq. (7.47)			
Ψ _{α,V}	10	$\frac{c_1}{1}$ $\frac{1}{(0.5 \cdot \sin \alpha_1)^2 + (0.5 \cdot \sin \alpha_1)}$	$\overline{\left(\right) \right) ^{2}} \geq 1.00$	EN 1992-4,	, Eq. (7.48)			
l _f [I	mm]	d _{nom} [mm]	k ₉	α	β	f _{c.cvl} [N/mm ²]		
4	1.6	10.00	1.700	0.021	0.040	25.00		
C ₁	[mm]	A _{c.V} [mm ²]	$A_{c,V}^0$ [mm ²]					
97	71.8	455,219	4,249,341					
ч	s,V	$\Psi_{h,V}$	$\Psi_{\alpha,V}$	e _{c.V} [mm]	$\Psi_{\text{ec,V}}$	$\Psi_{\text{re,V}}$		
0.	763	2.415	1.085	0.0	1.000	1.000		
V_{Rk}^0	_{,c} [kN]	k _T	γ _{M,c}	V _{Rd.c} [kN]	V _{Ed} [kN]	_		
313	3.523	1.0	1.500	44.753	0.593			

ANALYSIS REPORT

_				

Hilti PROFIS Engineering 3.0.76

	1	Address: Phone I Fax:
18.03.2022	кs4050 - M10X100	Design:
		Fastening Point:
	ension and shear loads (EN 1992	5 Combined ten
	ension and shear loads (EN 1992	5 Combined ten Steel failure

	β _N	β _v	α	Utilization $\beta_{N,V}$ [%]	Status
_	0.076	0.012	2.000	1	OK

 $\beta_{N}^{\alpha} \textbf{+} \beta_{V}^{\alpha} \leq 1.0$

Concrete failure

β _N	β_V	α	Utilization $\beta_{N,V}$ [%]	Status	
0.924	0.052	1.000	82	OK	

 $\left(\beta_{N}$ + $\beta_{V}\right)$ / 1.2 ≤ 1.0

6 Displacements (highest loaded anchor)

Short term loading:

N _{sk}	=	2.486 [kN]	δ_N	=	0.1745 [mm]
V_{Sk}	=	0.219 [kN]	δ_{V}	=	0.0627 [mm]
			δ_{NV}	=	0.1854 [mm]
Long t	erm	loading:			
N _{Sk}	=	2.486 [kN]	δ_{N}	=	0.1745 [mm]
$V_{\rm Sk}$	=	0.219 [kN]	δ_{V}	=	0.0941 [mm]
			δ_{NV}	=	0.1982 [mm]

Comments: Tension displacements are valid with half of the required installation torque moment for uncracked concrete! Shear displacements are valid without friction between the concrete and the baseplate! The gap due to the drilled hole and clearance hole tolerances are not included in this calculation!

The acceptable anchor displacements depend on the fastened construction and must be defined by the designer!

ANALYSIS REPORT

Hilti PROFIS Engineering 3.0.76

www.hilti.com.tr

Company:		Page:	8
Address:		Specifier:	
Phone I Fax:	1	E-Mail:	
Design:	KS4050 - M10X100	Date:	18.03.2022
Fastening Point:			

7 Warnings

- The anchor design methods in PROFIS Engineering require rigid baseplates per current regulations (AS 5216:2021, ETAG 001/Annex C, EOTA TR029 etc.). This means load re-distribution on the anchors due to elastic deformations of the baseplate are not considered - the baseplate is assumed to be sufficiently stiff, in order not to be deformed when subjected to the design loading. PROFIS Engineering calculates the minimum required baseplate thickness with CBFEM to limit the stress of the baseplate based on the assumptions explained above. The proof if the rigid baseplate assumption is valid is not carried out by PROFIS Engineering. Input data and results must be checked for agreement with the existing conditions and for plausibility!
- In general, the conditions given in ETAG 001, Annex C, section 4.2.2.1 and 4.2.2.3 b) are not fulfilled because the diameter of the clearance hole in the fixture acc. to Annex 3, Table 3 is greater than the values given in Annex C, Table 4.1 and AS5126 for the corresponding diameter of the anchor. Therefore the design resistance for anchor groups is limited to twice the steel resistance (of a single anchor) in accordance with the approval.
- Checking the transfer of loads into the base material is required in accordance with EN 1992-4, Annex A!
- The design is only valid if the clearance hole in the fixture is not larger than the value given in Table 6.1 of EN 1992-4! For larger diameters of the clearance hole see section 6.2.2 of EN 1992-4!
- The accessory list in this report is for the information of the user only. In any case, the instructions for use provided with the product have to be followed to ensure a proper installation.
- For the determination of the ψ_{rev} (concrete edge failure) the minimum concrete cover defined in the design settings is used as the concrete cover of the edge reinforcement.
- The characteristic bond resistances depend on the return period (service life in years): 50

Fastening meets the design criteria!

ANALYSIS REPORT

Hilti PROFIS Engineering 3.0.76

www.hilti.com.tr			
Company:		Page:	9
Address:		Specifier:	
Phone I Fax:	1	E-Mail:	
Design:	KS4050 - M10X100	Date:	18.03.2022
Fastening Point:			
8 Installation da	ita		

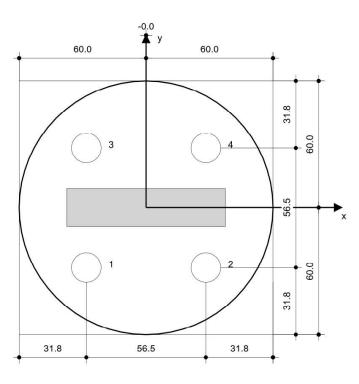
Baseplate, steel: S 235; E = 210,000.00 N/mm²; f_{yk} = 235.00 N/mm² Profile: Flat bar, 75 x 18; (L x W x T) = 75.0 mm x 18.0 mm

Hole diameter in the fixture: $d_f = 14.0 \text{ mm}$

Plate thickness (input): 12.0 mm

Recommended plate thickness: not calculated

Drilling method: Hammer drilled


Cleaning: Clean the drill hole. Under the conditions - according to fastener size and drilling direction - given in the ETA and MPII (IFU), the cleaning of the drill hole may be omitted.

Anchor type and size: HUS3-H 10 h_nom1 Item number: 2079912 HUS3-H 10x70 15/-/-Maximum installation torque: Hilti SIW 22T-A Hole diameter in the base material: 10.0 mm Hole depth in the base material: 65.0 mm Minimum thickness of the base material: 100.0 mm

Hilti HUS screw anchor with 55 mm embedment, 10 h_nom1, Steel galvanized, installation per ETA-13/1038

8.1 Recommended accessories

Drilling	Cleaning	Setting
Suitable Rotary HammerProperly sized drill bit	Manual blow-out pump	Hilti SIW 22T-A impact screw driver

Coordinates Anchor [mm]

Anchor	x	У	с _{.х}	c+x	с _{-у}	c _{+y}
1	-28.2	-28.2	9,971.8	1,028.2	306.8	9,928.2
2	28.3	-28.2	10,028.2	971.8	306.8	9,928.2
3	-28.2	28.2	9,971.8	1,028.2	363.2	9,871.8
4	28.3	28.2	10,028.2	971.8	363.2	9,871.8

ANALYSIS REPORT

Hilti PROFIS Engineering 3.0.76

www.hilti.com.tr		

Company:		Page:	10
Address:		Specifier:	
Phone I Fax:	1	E-Mail:	
Design:	KS4050 - M10X100	Date:	18.03.2022
Fastening Point:			

9 Remarks; Your Cooperation Duties

- Any and all information and data contained in the Software concern solely the use of Hilti products and are based on the principles, formulas and security regulations in accordance with Hilti's technical directions and operating, mounting and assembly instructions, etc., that must be strictly complied with by the user. All figures contained therein are average figures, and therefore use-specific tests are to be conducted prior to using the relevant Hilti product. The results of the calculations carried out by means of the Software are based essentially on the data you put in. Therefore, you bear the sole responsibility for the absence of errors, the completeness and the relevance of the data to be put in by you. Moreover, you bear sole responsibility for having the results of the calculation checked and cleared by an expert, particularly with regard to compliance with applicable norms and permits, prior to using them for your specific facility. The Software serves only as an aid to interpret norms and permits without any guarantee as to the absence of errors, the correctness and the relevance of the results or suitability for a specific application.
- You must take all necessary and reasonable steps to prevent or limit damage caused by the Software. In particular, you must arrange for
 the regular backup of programs and data and, if applicable, carry out the updates of the Software offered by Hilti on a regular basis. If you do
 not use the AutoUpdate function of the Software, you must ensure that you are using the current and thus up-to-date version of the Software
 in each case by carrying out manual updates via the Hilti Website. Hilti will not be liable for consequences, such as the recovery of lost or
 damaged data or programs, arising from a culpable breach of duty by you.

ANALYSIS REPORT

5. MAXIMUM LIMITS FOR KS4050 SYSTEM

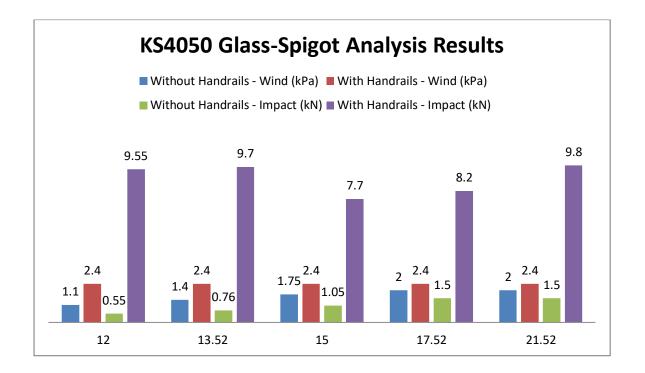

Calculations of the maximum wind and Impact loads were made based on the analysis for glasses with width of 1.2m and height of 1.2m.

Table 5. KS 4050 Glass-spigot analysis Results / without handrails

	1.2 m height, 1.2 m width									
	12 mm Glass	2 mm Glass 13.52 mm Glass 15 mm Glass 17.52 mm Glass 21.52 mm Glas								
	kN/m2	kN/m2	kN/m2	kN/m2	kN/m2					
Max Wind:	1.1	1.4	1.75	2	2					
	kN/m	kN/m	kN/m	kN/m	kN/m					
Max Impact*:	0.55	0.76	1.05	1.5	1.5					

Table 6. KS 4050 Glass analysis Results / with handrails

	1.2 m height, 1.2 m width								
	12 mm Glass	2 mm Glass 13.52 mm Glass 15 mm Glass 17.52 mm Glass 21.52 mm Gla							
	kN/m2	kN/m2	kN/m2	kN/m2	kN/m2				
Max Wind:	2.4	2.4	2.4	2.4	2.4				
	kN/m	kN/m	kN/m	kN/m	kN/m				
Max Impact*:	9.55	9.7	7.7	8.2	9.8				

ANALYSIS REPORT

Important Note

- Under wind loads of 1.8 kPa, and for glasses with thickness of 21.52mm, 17.52mm, and 15mm the reaction forces affecting on each wall connector for any mounted handrail approximately equals to 460 N.
- Under wind loads of 1.8 kPa, and for glasses with thickness of 13.52mm, and 12 mm the reaction forces affecting on each wall connector for any mounted handrail approximately equals to 500 N.
- Under impact loads, for glass of any thickness the reaction forces affecting on each wall connector for any mounted handrail approximately equals to (impact load / 2).

<u>Example</u>

for KS 4050 Glass-spigot with handrails - 21.52 mm Glass ---> the reaction forces affecting on each wall connector equals to (9.8 / 2) = 4.9 kN

- The aforementioned reaction forces should be considered when selecting the wall connector of any handrail.

ANCHORING

ANALYSIS REPORT

Appendix

ANALYSIS REPORT

1. Properties of 6063 T6 Aluminum Alloy

ALLOY AND TEMPER	TENSION			HARDNESS	SHEAR	FATIGUE	MODULUS	
	STRENGTH MPa		ELONGATION percent.		BRINNELL NUMBER	ULTIMATE SHEARING STRENGTH	ENDURANCE ③ LIMIT	MODULUS ④ OF ELASTICITY
CEMPENS	ULTIMATE	YIELD	1.60 mm Thick Specimen	12.5 mm Diameter Specimen	500 kg load 10 mm ball	MPa	MPa	MPa × 10ª
5083-O	290	145		20		170		71
5083-H116 1	315	230	2	14			160	71
5083-H321	315	230	22	14	1 12		160	71
5086-O	260	115	22	(1999)	17	165		71
5086-H32	290	205	12		1.1			71
5086-H116 1	290	205	12					71
5086-H34	325	255	10			185		71
5086-H112	270	130	14					71
5154-0	240	115	27	2011	58	150	115	70
5154-H32	240	205	15		67	150	125	70
	in the second second	11.00.000	13	••	100 C	165	130	70
5154-H34 5154-H36	290 310	230 250	13	~~~	73 78	165	130	70
	310	250	12		80	195	140	70
5154-H38 5154-H112	240	115	25	(63		145	70
	<u> </u>	2				**	· · · · · · · · · · · · · · · · · · ·	·
5252-H25	235	170	11		68	145	22.1	69
5252-H38, H28	285	240	5		75	160		69
5254-O	240	115	27		58	150	115	70
5254-H32	270	205	15	315	67	150	125	70
5254-H34	290	230	13		73	165	130	70
5254-H36	310	250	12		78	180	140	70
5254-H38	330	270	10		80	195	145	70
5254-H112	240	115	25		63		115	70
5454-O	250	115	22		62	160		70
5454-H32	275	205	10		73	165	82n	70
5454-H34	305	240	10		81	180	30	70
5454-H111	260	180	14		70	160	44.1	70
5454-H112	250	125	18	1.044	62	160		70
5456-O	310	160	11	22			5. C	71
5456-H112	310	165	S	20	6600	1.0000	991	71
5456-H321, H116	350	255		14	90	205	10	71
5457-0	130	50	22	2004	32	85	×	69
5457-H25	190	160	12		48	110		69
5457-H38, H28	205	185	6	5.94.9	55	125		69
5652-O	195	90	25	27	47	125	110	70
5652-H32	230	195	12	16	60	140	115	70
5652-H34	260	215	10	12	68	145	125	70
5652-H36	275	240	8	9	73	160	130	70
5652-H38	290	255	7	7	77	165	140	70
5657-H25	160	140	12	0.04	40	95		69
5657-H38, H28	195	165	7		50	105	55	69
6061-O	125	55	25	27	30	85	60	69
6061-T4, T451	240	145	22	22	65	165	95	69
6061-T6, T651	310	275	12	15	95	205	95	69
Iclad 6061-O	115	50	25		14	75		69
Iclad 6061-T4, T451	230	130	22		1 12	150	10 C	69
Iclad 6061-T6, T651	290	255	12			185		69
6063-O	90	50	17	7992	25	70	55	69
6063-T1	150	90	20		42	95	60	69
6063-T4	170	90	22		42			69
6063-T5	185	145	12		60	115	70	69
6063-T6	240	215	12		73	150	70	69
6063-T83	255	240	9		82	150		69
6063-T831	205	185	10	115.62	70	125	ii.	69
6063-T832	290	270	12	**	95	185		69
				11000				

Table 6M TYPICAL MECHANICAL PROPERTIES (Continued) © ®

For all numbered tootnotes, see page IV-32.

January 2010

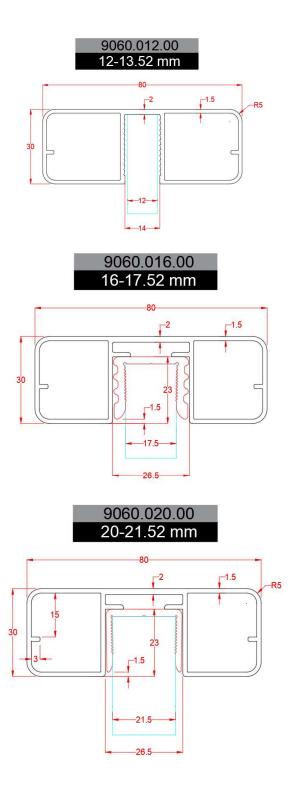

IV-31

Figure 35. Aluminium design manual (2010) - The Aluminium Association

ANALYSIS REPORT

2. Handrails details

ANALYSIS REPORT

Besan Metal İnşaat Taahüt San. ve Dış Tic. Ltd. Şti. İkitelli Organize Sanayi Bölgesi, Biksan Sanayi Sitesi A -1 Blok No: 25-28 34560 Başakşehir - İSTANBUL/TURKEY

E-mail: <u>info@kozzarailing.com</u> Web: <u>www.kozzarailing.com</u> Telephone: <u>+90 212 485 83 18</u>